X

reviewer4@nptel.iitm.ac.in \sim
NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Measure Theory (course)

Announcements (announcements)
About the Course (https://swayam.gov.in/nd1_noc20_ma02/preview) Ask a Question (forum)
Progress (student/home) Mentor (student/mentor)

Unit 5 - Lebesgue measure and its properties

Course outline

How does an NPTEL online course work?

Sigma algebras, Measures and Integration

Integration and convergence theorems

Outer measure

Lebesgue
measure and its
properties

Lebesgue sigma
algebra (unit?
unit=36\&lesson=37)
Lebesgue
measure (unit?
unit=36\&lesson=38)
Fine properties
of measurable
sets (unit?
unit=36\&lesson=39)

Week 4 Assessment

The due date for submitting this assignment has passed. Due on 2020-02-26, 23:59 IST. As per our records you have not submitted this assignment.

1) Let A be a subset of $[0,1]$ and m denote the Lebesgue measure on R. Then which of the following are true?

If A is closed then $m(A)>0$

If A is open then $m(A)=m(\bar{A})$, where \bar{A} is the closure of A

If $m(\operatorname{int}(A))=m(\bar{A})$ then A is (Lebesgue) measurable, where $\operatorname{int}(A)$ is the interior of A.

If $m(\operatorname{int}(A))=m(\bar{A})$ then A need not be measurable
No, the answer is incorrect.
Score: 0
Accepted Answers:
If $m(\operatorname{int}(A))=m(\bar{A})$ then A is (Lebesgue) measurable, where int (A) is the interior of A.
2) Define an equivalence relation in [1,2] by $x \sim y$ if $x-y$ is rational. Consider the set $N \quad 1$ point consisting of precisely one element from each equivalence class. Then
N is uncountable
\square
$[1,2] \backslash N$ is uncountable
$-$
$m_{*}(N)=0$

1 point

Invariance properties of Lebesgue measure (unit? unit=36\&lesson=40)

Non measurable set (unit? unit=36\&lesson=41)

Quiz : Week 4 Assessment (assessment? name=100)

Lebesgue

measure and positive Borel measures on locally compact spaces

Lebesgue measure and invariance properties

L^p spaces and completeness

Product spaces and Fubini's theorem

Applications of Fubini's theorem and complex measures

Complex

 measures and Radon-Nikodym theoremRadon-Nikodym theorem and applications

Riesz

representation
theorem and
Lebesgue
differentiation
theorem

Weekly Feedback forms

Video download

$$
E \subset N \text { measurable implies } m_{*}(E)=0
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
N is uncountable
[1, 2] $\mid N$ is uncountable
$E \subset N$ measurable implies $m_{*}(E)=0$
3) Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function. Then which of the following are necessarily true?

1 point

If f is measurable, then $\phi \circ f$ is measurable, for any continuous real valued function ϕ

If f^{2} is measurable, then f is measurable

If f is differentiable, then f is measurable

If $g: \mathrm{R} \rightarrow \mathrm{R}$ be a measurable function such that $f=g$ a.e, then f is measurable
No, the answer is incorrect.
Score: 0
Accepted Answers:
If f is measurable, then ϕ of is measurable, for any continuous real valued function ϕ If f is differentiable, then f^{\prime} is measurable
If $g: R \rightarrow R$ be a measurable function such that $f=g$ a.e, then f is measurable
4) Let $\left\{f_{n}\right\}$ be a sequence of real valued functions defined on $[0,1]$ which converges pointwise to $\mathbf{1}$ point a continuous real valued function f on R . Then which of the following are necessarily true ?

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x \\
& \text { If } 0 \leq f_{n}(x) \leq f(x) \forall n \in \mathrm{~N} \text { and } x \in[0,1] \text { then } \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x \\
& \text { If }\left|f_{n}(x)\right| \leq \frac{1}{\sqrt{x}} \forall n \in \mathrm{~N} \text { and } x \in[0,1] \text { then } \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x \\
& \text { If }\left|f_{n}(x)\right| \leq 1 \forall n \in \mathrm{~N} \text { and } x \in[0,1] \text { then } \lim _{n \rightarrow \infty} \int_{K} f_{n}(x) d x=\int_{K} f(x) d x \text { for all measurable } K \subset[0,1]
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
If $0 \leq f_{n}(x) \leq f(x) \forall n \in N$ and $x \in[0,1]$ then $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x$
If $\left|f_{n}(x)\right| \leq \frac{1}{\sqrt{x}} \forall n \in N$ and $x \in[0,1]$ then $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x$
If $\left|f_{n}(x)\right| \leq 1 \forall n \in N$ and $x \in[0,1]$ then $\lim _{n \rightarrow \infty} \int_{K} f_{n}(x) d x=\int_{K} f(x) d x$ for all measurable $K \subset[0,1]$
5) Assume $\left\{f_{n}\right\},\left\{g_{n}\right\}, f, g \in L^{1}\left(\mathrm{R}^{n}\right)$ be such that $f_{n} \longrightarrow f$ and $g_{n} \longrightarrow g$ pointwise a.e., then which 1 point of the following are true?
$\int_{\mathrm{R}^{n}}\left(f_{n}+g_{n}\right) d m \longrightarrow \int_{\mathrm{R}^{n}}(f+g) d m$

$$
\begin{aligned}
& \left|f_{n}\right| \leq|f| \text { a.e., }\left|g_{n}\right| \leq|g| \text { a.e. implies } \int_{\mathrm{R}^{n}}\left(f_{n}+g_{n}\right) d m \longrightarrow \int_{\mathrm{R}^{n}}(f+g) d m \\
& \left|f_{n}\right| \leq|g| \text { a.e. implies } \int_{\mathrm{R}^{n}} f_{n} d m \longrightarrow \int_{\mathrm{R}^{n}} f d m \\
& \left|f_{n}\right| \leq g_{n} \text { a.e. and } \int_{\mathrm{R}^{n} g_{n}} d m \longrightarrow \int_{\mathrm{R}^{n} g} d m \text { implies } \int_{\mathrm{R}^{n} f} f_{n} d m \longrightarrow \int_{\mathrm{R}^{n}} f d m
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\begin{aligned}
& \left|f_{n}\right| \leq|f| \text { a.e., }\left|g_{n}\right| \leq|g| \text { a.e. implies } \int_{R^{n}}\left(f_{n}+g_{n}\right) d m \longrightarrow \int_{R^{n}}(f+g) d m \\
& \left|f_{n}\right| \leq|g| \text { a.e. implies } \int_{R^{n}} f_{n} d m \longrightarrow \int_{R^{n}} f d m \\
& \left|f_{n}\right| \leq g_{n} \text { a.e. and } \int_{R^{n}} g_{n} d m \longrightarrow \int_{R^{n}} g d m \text { implies } \int_{R^{n}} f_{n} d m \longrightarrow \int_{R^{n}} f d m
\end{aligned}
$$

$6)$ Consider the sequence of functions $f_{n}(x)=e^{-n x^{2}}$ on $[1, \infty)$. Which of the following are true?

$$
\begin{aligned}
& \int_{1}^{\infty} f_{n}(x) d x \rightarrow 0 \\
& \square \\
& \sup _{n}\left\|f_{n}\right\|_{1}<\infty \\
& \square \\
& f_{n} \text { converges in } L^{1}[1, \infty)
\end{aligned}
$$

$$
f_{n} \text { does not converge in } L^{p}[1, \infty) \text { for any } 1 \leq p \leq \infty
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\begin{aligned}
& \int_{1}^{\infty} f_{n}(x) d x \rightarrow 0 \\
& \sup _{n}\left\|f_{n}\right\|_{1}<\infty \\
& f_{n} \text { converges in } L^{1}[1, \infty)
\end{aligned}
$$

7) Let $\left\{E_{n}\right\}$ be a sequence of measurable sets in R such that $m\left(E_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ and $f \geq 0$ be measurable. Which of the following are true ?

$$
\begin{aligned}
& \int_{E_{n}} f(x) d x \rightarrow 0 \text { as } n \rightarrow \infty \\
& \text { If } E_{n+1} \subset E_{n}, \forall n \text { then } \int_{E_{n}} f(x) d x \rightarrow 0 \text { as } n \rightarrow \infty \\
& \text { If } f \text { is bounded, then } \int_{E_{n}} f(x) d x \rightarrow 0 \text { as } n \rightarrow \infty \\
& \text { If } f \text { is integrable and } E_{n+1} \subset E_{n}, \forall n \text { then } \int_{E_{n}} f(x) d x \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
If f is bounded, then $\int_{E_{n}} f(x) d x \rightarrow 0$ as $n \rightarrow \infty$
If f is integrable and $E_{n+1} \subset E_{n}$, $\forall n$ then $\int_{E_{n}} f(x) d x \rightarrow 0$ as $n \rightarrow \infty$
8) Let $f, f_{n}:(X, \mathrm{~F}, \mu) \rightarrow \mathrm{R}$ be measurable functions. Then which of the following are true?

If $0 \leq f_{n}$ converges to f uniformly, then $\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu$

If $\mu(X)$ is finite and $\left|f_{n}(x)\right| \leq 1, \forall x \in X$, and f_{n} converges to $f a e$ then $\lim _{n \rightarrow \infty} \int_{X} g \circ f_{n} d \mu=\int_{X} g \circ f d \mu, \forall$ continuous function g on R

If $\mu(X)<\infty$ and if f_{n} are bounded by one, f_{n} converges to f a.e. (μ), then $\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu$

$$
\text { If } f_{1} \leq f_{2} \leq \ldots \leq f_{n} \leq f_{n+1} \leq \ldots, \text { and } f_{n} \text { converges to } f \text { ae then } \lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
If $\mu(X)$ is finite and $\left|f_{n}(x)\right| \leq 1, \forall x \in X$, and f_{n} converges to f ae then $\lim _{n \rightarrow \infty} \int_{X} g \circ f_{n} d \mu=\int_{X} g \circ f d \mu, \forall$ continuous function g on R
If $\mu(X)<\infty$ and if f_{n} are bounded by one, f_{n} converges to f a.e. (μ), then $\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu$
9) Let $\left\{f_{n}\right\}$ be a sequence of real valued measurable functions defined on R which converges uniformly to a real valued function f on R . Then which of the following are necessarily true?

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f_{n}(x) d x=\int_{-\infty}^{\infty} f(x) d x \\
& \lim _{n \rightarrow \infty} \int_{1}^{\infty} f_{n}(x) d x=\int_{1}^{\infty} f(x) d x \\
& \lim _{n \rightarrow \infty} \int_{1}^{2} f_{n}(x) d x=\int_{1}^{2} f(x) d x \\
& \square \\
& \lim _{n \rightarrow \infty} \int_{K} f_{n}(x) d x=\int_{K} f(x) d x \text { for any compact set } K \subset \mathrm{R}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{I}^{2} f_{n}(x) d x=\int_{I}^{2} f(x) d x \\
& \lim _{n \rightarrow \infty} \int_{K} f_{n}(x) d x=\int_{K} f(x) d x \text { for any compact set } K \subset R
\end{aligned}
$$

10) Let $A \in \mathrm{~L}\left(\mathrm{R}^{n}\right)$. Then which of the following are correct?
```
\deltaA\in L( }\mp@subsup{\textrm{R}}{}{n})\mathrm{ for all }\delta>
```

$A+x \in \mathrm{~L}\left(\mathrm{R}^{n}\right)$ for all $x \in \mathrm{R}^{n}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\delta A \in L\left(R^{n}\right)$ for all $\delta>0$
$A+x \in L\left(R^{n}\right)$ for all $x \in R^{n}$

