Х

(https://swayam.gov.in/nc_details/NPTEL)

reviewer4@nptel.iitm.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Measure Theory (course)

Announcements (announcements)

About the Course (https://swayam.gov.in/nd1_noc20_ma02/preview) Ask a Question (forum)

Progress (student/home) Mentor (student/mentor)

Unit 5 - Lebesgue measure and its properties

Course outline	Week 4 Assessment	
How does an NPTEL online course work?	The due date for submitting this assignment has passed. Due on 2020-02-26, 23:59 IST. As per our records you have not submitted this assignment.	
Sigma algebras, Measures and Integration	 1) Let A be a subset of [0, 1] and m denote the Lebesgue measure on R. Then which of the following are true? If A is closed then m(A) > 0 	1 point
Integration and convergence theorems	If <i>A</i> is open then $m(A) = m(\overline{A})$, where \overline{A} is the closure of <i>A</i>	
Outer measure	If $m(int(A)) = m(\overline{A})$ then A is (Lebesgue) measurable, where $int(A)$ is the interior of A.	
Lebesgue measure and its properties	If $m(int(A)) = m(\overline{A})$ then A need not be measurable No, the answer is incorrect. Score: 0 Accepted Answers:	
 Lebesgue sigma algebra (unit? unit=36&lesson=37) 	 If m(int(A)) = m(Ā) then A is (Lebesgue) measurable, where int(A) is the interior of A. 2) Define an equivalence relation in [1, 2] by x ~ y if x - y is rational. Consider the set N 	1 point
 Lebesgue measure (unit? unit=36&lesson=38) 	consisting of precisely one element from each equivalence class. Then N is uncountable	
 Fine properties of measurable sets (unit? unit=36&lesson=39) 	[1, 2] $\setminus N$ is uncountable $m_*(N) = 0$	

 Invariance properties of Lebesgue measure (unit? unit=36&lesson=40)

 Non measurable set (unit? unit=36&lesson=41)

Quiz : Week 4 Assessment (assessment? name=100)

Lebesgue measure and positive Borel measures on locally compact spaces

Lebesgue measure and invariance properties

L[^]p spaces and completeness

Product spaces and Fubini's theorem

Applications of Fubini's theorem and complex measures

Complex measures and Radon-Nikodym theorem

Radon-Nikodym theorem and applications

Riesz representation theorem and Lebesgue differentiation theorem

Weekly Feedback forms

Video download

 $E \subset N$ measurable implies $m_*(E) = 0$ No, the answer is incorrect. Score: 0 Accepted Answers: N is uncountable [1, 2] \ N is uncountable $E \subset N$ measurable implies $m_{\star}(E) = 0$ 3) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Then which of the following are necessarily true? 1 point If f is measurable, then $\phi \circ f$ is measurable, for any continuous real valued function ϕ If f^2 is measurable, then *f* is measurable If *f* is differentiable, then f' is measurable If $g: \mathbb{R} \to \mathbb{R}$ be a measurable function such that f = g a. e, then f is measurable No, the answer is incorrect. Score: 0 Accepted Answers: If f is measurable, then $\phi \circ f$ is measurable, for any continuous real valued function ϕ If *f* is differentiable, then f' is measurable If $g: R \to R$ be a measurable function such that f = g a. e, then f is measurable

4) Let $\{f_n\}$ be a sequence of real valued functions defined on [0, 1] which converges pointwise to **1** point a continuous real valued function *f* on R. Then which of the following are necessarily true ?

$$\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$$

If $0 \le f_{n}(x) \le f(x) \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$
If $|f_{n}(x)| \le \frac{1}{\sqrt{x}} \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$
If $|f_{n}(x)| \le 1 \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{K} f_{n}(x) dx = \int_{K} f(x) dx$ for all measurable $K \subset [0, 1]$
No, the answer is incorrect.
Score: 0
Accepted Answers:
If $0 \le f_{n}(x) \le f(x) \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$
If $|f_{n}(x)| \le \frac{1}{\sqrt{x}} \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$
If $|f_{n}(x)| \le \frac{1}{\sqrt{x}} \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$
If $|f_{n}(x)| \le 1 \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$
If $|f_{n}(x)| \le 1 \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$
If $|f_{n}(x)| \le 1 \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$
If $|f_{n}(x)| \le 1 \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$
If $|f_{n}(x)| \le 1 \forall n \in \mathbb{N}$ and $x \in [0, 1]$ then $\lim_{n \to \infty} \int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} f(x) dx$ for all measurable $K \subset [0, 1]$

5) Assume $\{f_n\}, \{g_n\}, f, g \in L^1(\mathbb{R}^n)$ be such that $f_n \longrightarrow f$ and $g_n \longrightarrow g$ pointwise a.e., then which **1** point of the following are true?

$$\int_{\mathbf{R}^n} (f_n + g_n) \, dm \longrightarrow \int_{\mathbf{R}^n} (f + g) \, dm$$

 $\begin{aligned} |f_n| &\leq |f| \text{ a.e., } |g_n| \leq |g| \text{ a.e. implies } \int_{\mathbb{R}^n} (f_n + g_n) \, dm \longrightarrow \int_{\mathbb{R}^n} (f + g) \, dm \\ |f_n| &\leq |g| \text{ a.e. implies } \int_{\mathbb{R}^n} f_n \, dm \longrightarrow \int_{\mathbb{R}^n} f \, dm \\ |f_n| &\leq g_n \text{ a.e. and } \int_{\mathbb{R}^n} g_n \, dm \longrightarrow \int_{\mathbb{R}^n} g \, dm \text{ implies } \int_{\mathbb{R}^n} f_n \, dm \longrightarrow \int_{\mathbb{R}^n} f \, dm \\ \text{No, the answer is incorrect.} \\ \text{Score: 0} \\ \text{Accepted Answers:} \\ |f_n| &\leq |f| \text{ a.e., } |g_n| &\leq |g| \text{ a.e. implies } \int_{\mathbb{R}^n} (f_n + g_n) \, dm \longrightarrow \int_{\mathbb{R}^n} (f + g) \, dm \\ |f_n| &\leq |g| \text{ a.e. implies } \int_{\mathbb{R}^n} f \, dm \longrightarrow \int_{\mathbb{R}^n} f \, dm \\ |f_n| &\leq |g| \text{ a.e. implies } \int_{\mathbb{R}^n} g \, dm \text{ implies } \int_{\mathbb{R}^n} f \, dm \end{pmatrix} \\ \|f_n\| &\leq g_n \text{ a.e. and } \int_{\mathbb{R}^n} g \, dm \longrightarrow \int_{\mathbb{R}^n} g \, dm \text{ implies } \int_{\mathbb{R}^n} f \, dm \\ \|f_n\| &\leq g_n \text{ a.e. and } \int_{\mathbb{R}^n} g \, dm \longrightarrow \int_{\mathbb{R}^n} g \, dm \text{ implies } \int_{\mathbb{R}^n} f \, dm \end{pmatrix} \\ \\ \text{6) Consider the sequence of functions } f_n(x) &= e^{-nx^2} \text{ on } [1, \infty). \text{ Which of the following are true?} \end{aligned}$

 $\int_{1}^{\infty} f_{n}(x)dx \to 0$ $\sup_{n} ||f_{n}||_{1} < \infty$ $f_{n} \text{ converges in } L^{1}[1, \infty)$ $f_{n} \text{ does not converge in } L^{p}[1, \infty) \text{ for any } 1 \le p \le \infty$

No, the answer is incorrect. Score: 0 Accepted Answers: $\int_{1}^{\infty} f_{n}(x) dx \rightarrow 0$ $\sup_{n} \|f_{n}\|_{1} < \infty$ f_{n} converges in $L^{1}[1, \infty)$

7) Let $\{E_n\}$ be a sequence of measurable sets in R such that $m(E_n) \to 0$ as $n \to \infty$ and $f \ge 0$ be **1 point** measurable. Which of the following are true ?

 $\int_{E_n} f(x) dx \to 0 \text{ as } n \to \infty$ If $E_{n+1} \subset E_n$, $\forall n \text{ then } \int_{E_n} f(x) dx \to 0 \text{ as } n \to \infty$ If f is bounded, then $\int_{E_n} f(x) dx \to 0 \text{ as } n \to \infty$ If f is integrable and $E_{n+1} \subset E_n$, $\forall n$ then $\int_{E_n} f(x) dx \to 0 \text{ as } n \to \infty$ No, the answer is incorrect.
Score: 0
Accepted Answers:
If f is bounded, then $\int_{E_n} f(x) dx \to 0 \text{ as } n \to \infty$ If f is integrable and $E_{n+1} \subset E_n$. $\forall n$ then $\int_{E_n} f(x) dx \to 0 \text{ as } n \to \infty$ 8) Let $f, f_n: (X, F, \mu) \to R$ be measurable functions. Then which of the following are true?
1 point

If $0 \le f_n$ converges to f uniformly, then $\lim_{n \to \infty} \int_{\mathcal{X}} f_n d\mu = \int_{\mathcal{X}} f d\mu$

1 point

If $\mu(X)$ is finite and $|f_n(x)| \leq 1$, $\forall x \in X$, and f_n converges to f at then $\lim_{n \to \infty} \int_X g \circ f_n d\mu = \int_X g \circ f d\mu$, \forall continuous function g on R

continuous function g on K

If $\mu(X) < \infty$ and if f_n are bounded by one, f_n converges to f a.e.(μ), then $\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu$

If
$$f_1 \leq f_2 \leq \ldots \leq f_n \leq f_{n+1} \leq \ldots$$
, and f_n converges to f at then $\lim_{n \to \infty} \int_{\mathcal{X}} f_n d\mu = \int_{\mathcal{X}} f d\mu$

No, the answer is incorrect. Score: 0 Accepted Answers: If u(X) is finite and $|f(x)| \le 1$ for F(X) and

If $\mu(X)$ is finite and $|f_n(x)| \leq 1$, $\forall x \in X$, and f_n converges to f at then $\lim_{n \to \infty} \int_X g \circ f_n d\mu = \int_X g \circ f d\mu$, \forall

continuous function g on R If $\mu(X) < \infty$ and if f_n are bounded by one, f_n converges to f a.e.(μ), then $\lim_{n \to \infty} \int_{X} f_n d\mu = \int_{X} f d\mu$

9) Let $\{f_n\}$ be a sequence of real valued measurable functions defined on R which converges **1** point uniformly to a real valued function f on R. Then which of the following are necessarily true?

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} f(x) dx$$
$$\lim_{n \to \infty} \int_{1}^{\infty} f_n(x) dx = \int_{1}^{\infty} f(x) dx$$
$$\lim_{n \to \infty} \int_{1}^{2} f_n(x) dx = \int_{1}^{2} f(x) dx$$
$$\lim_{n \to \infty} \int_{K} f_n(x) dx = \int_{K} f(x) dx \text{ for any compact set } K \subset \mathbb{R}$$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$$\lim_{n \to \infty} \int_{1}^{2} f_n(x) dx = \int_{1}^{2} f(x) dx$$
$$\lim_{n \to \infty} \int_{K} f_n(x) dx = \int_{K} f(x) dx \text{ for any compact set } K \subset \mathbb{R}$$
10) et $A \in L(\mathbb{R}^n)$. Then which of the following are correct ?
$$A \in L(\mathbb{R}^n) \text{ for all } \delta > 0$$
$$A + x \in L(\mathbb{R}^n) \text{ for all } x \in \mathbb{R}^n$$
No, the answer is incorrect.
Score: 0
Accepted Answers:
 $\delta A \in L(\mathbb{R}^n) \text{ for all } \delta > 0$

1 point