

(https://swayam.gov.in/nc_details/NPTEL)

reviewer4@nptel.iitm.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Measure Theory (course)

Announcements (announcements)

About the Course (https://swayam.gov.in/nd1_noc20_ma02/preview) Ask a Question (forum)

Progress (student/home) Mentor (student/mentor)

Unit 3 - Integration and convergence theorems

 Dominated convergence theorem (unit? unit=24&lesson=28)

 Sets of measure zero and completion (unit? unit=24&lesson=29)

Quiz : Week 2 Assesment (assessment? name=94)

Outer measure

Lebesgue measure and its properties

Lebesgue measure and positive Borel measures on locally compact spaces

Lebesgue measure and invariance properties

L[^]p spaces and completeness

Product spaces and Fubini's theorem

Applications of Fubini's theorem and complex measures

Complex measures and Radon-Nikodym theorem

Radon-Nikodym theorem and applications

Riesz representation theorem and Lebesgue $\int_{X} \liminf f_{n}d\mu < \liminf \int_{X} f_{n}d\mu$ $\int_{X} \liminf f_{n}d\mu = \liminf \int_{X} f_{n}d\mu$ $\int_{X} \limsup f_{n}d\mu < \limsup \int_{X} f_{n}d\mu$ $\int_{X} \limsup f_{n}d\mu = \limsup \int_{X} f_{n}d\mu$ No, the answer is incorrect. Score: 0
Accepted Answers: $\int_{X} \liminf f_{n}d\mu < \liminf \int_{X} f_{n}d\mu$

3) Consider the space \mathbb{N} with power set sigma algebra and counting measure μ . Let $f : \mathbb{N} \to \mathbb{R}$ be measurable and zero $ae(\mu)$. Which of the following are always true?

1 point

 $f(n) = 0 \ \forall n \in \mathbb{N}$ $f(1) \neq 0, f(n) = 0 \ \forall n > 1$ $f(n) = 0 \text{ except for finitely many } n \in \mathbb{N}$ f(n) = 0 only when n is a prime numberNo, the answer is incorrect. Score: 0

Accepted Answers:

 $f(n) = 0 \ \forall n \in \mathbb{N}$

4) Let *X* be a non empty set and $A \subset X$ be a proper subset. Consider the sigma algebra **1** point $\mathcal{F} = \{\phi, X, A, A^c\}$. Let $f : (X, \mathcal{F}) \to \mathbb{R}$ be measurable. Which of the following are always true?

 $f = \alpha \chi_A + \beta \chi_{A^c} \text{ for some } \alpha, \beta \in \mathbb{R}$ $f = \alpha \chi_A \text{ for some } \alpha \in \mathbb{R}$ $f = \beta \chi_{A^c} \text{ for some } \beta \in \mathbb{R}$ $f \equiv 0$ No, the answer is incorrect. Score: 0 Accepted Answers:

Accepted Answers: $f = \alpha \chi_A + \beta \chi_{A^c}$ for some $\alpha, \beta \in \mathbb{R}$

5) Let (X, \mathcal{F}, μ) be a measure space. Let $A_n \in \mathcal{F}$ be such that $A_1 \subset A_2 \subset A_3 \subset \cdots$ and **1** point $\bigcup_{n=1}^{\infty} A_n = X$. Let $f : (X, \mathcal{F}, \mu) \to \mathbb{R}$ be a measurable function and $f(x) \ge 0$ ae(μ). Which of the following are always true?

 $f\chi_{A_n}\uparrow f$ ae $\int_{A_n} f d\mu \uparrow \int_X f d\mu$

differentiation theorem

Weekly Feedback forms

Video download

 $\int_{A_n} f d\mu \downarrow \int_X f d\mu$ $f \chi_{A_n} \downarrow f$ No, the answer is incorrect. Score: 0
Accepted Answers: $f \chi_{A_n} \uparrow f \text{ ae}$ $\int_{A_n} f d\mu \uparrow \int_X f d\mu$

6) Let (X, \mathcal{F}, μ) be a measure space and μ be a probability measure, that is $\mu(X) = 1$. Let **1** point $\{A_n\}$ be a sequence in \mathcal{F} . Which of the following are true?

 $\mu(\limsup A_n) \ge \limsup \mu(A_n)$ $\mu(\limsup A_n) \le \limsup \mu(A_n)$ $\mu(\liminf A_n) \ge \liminf \mu(A_n)$ $\mu(\liminf A_n) \le \liminf \mu(A_n)$

No, the answer is incorrect. Score: 0 Accepted Answers: $\mu(\limsup A_n) \ge \limsup \mu(A_n)$ $\mu(\liminf A_n) \le \liminf \mu(A_n)$

7) Let (X, \mathcal{F}, μ) be a measure space. Let $f_n : X \to \mathbb{R}$ be measurable, $A = \{x \in X \mid \lim f_n(x) \text{ exists }\}$. Then, 1 point

$$A \in \mathcal{F}$$

$$A = \phi$$

$$A = X$$

$$A^{c} \in \mathcal{F}$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$A \in \mathcal{F}$$

$$A^{c} \in \mathcal{F}$$

8) Let (X, \mathcal{F}, μ) be a measure space and $A_n \in \mathcal{F}$. Suppose $\mu(X) = 1, \sum \mu(A_n) < \infty$. **1** point Then which of the following are true?

 $\mu(\limsup A_n) = 0$ $\mu(\limsup A_n) = 0$ $\mu(\limsup A_n) = 1$ $\mu(\liminf A_n) = 1$

. .

. .

No, the answer is incorrect. Score: 0 Accepted Answers: $\mu(\limsup A_n) = 0$ $\mu(\liminf A_n) = 0$

9) (X, \mathcal{F}, μ) be a probability measure space. Suppose $f_n : X \to \mathbb{R}$ are measurable and **1** point $|f_n| \le 1$ $ae(\mu) \ \forall n$. Suppose $f_n \to 1$ $ae(\mu)$. Then,

$$\int_X f_n d\mu \to 1$$

$$\int_X f_n d\mu \to 0$$

$$\int_X f_n d\mu \to \infty$$

$$\int_X f_n d\mu \text{ does not converge}$$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$$\int_X f_n d\mu \to 1$$

10) Let (X, \mathcal{F}, μ) be a measure space and $A_n \in \mathcal{F}$ such that $\mu(A_n) = 0 \,\forall n$. Which of the **1** point following are true?

$$\mu(\bigcup_{n=1}^{\infty} A_n) = 0$$

$$\mu(\bigcup_{n=1}^{\infty} A_n) = 1$$

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \infty$$

$$\mu(\bigcup_{n=1}^{\infty} A_n) > 0$$

No, the answer is incor

No, the answer is incorrect. Score: 0 Accepted Answers: $\mu(\bigcup_{n=1}^{\infty} A_n) = 0$