Courses » Integral Equations,calculus of variations and its applications

Unit 9 - Week 8

Week 9

Week 10

Week 11

Week 12

WEEKLY
FEEDBACK

DOWNLOAD VIDEOS

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\frac{2}{\pi x}(2 \sin 2 x-\sin x)
$$

3)

1 point
The solution of the integral equation $\int_{0}^{\infty} f(x) \sin s x d x=\left\{\begin{array}{ll}1-s, & 0 \leq s \leq 1 \\ 0, & s>1\end{array}, ~\right.$ is

$$
\begin{aligned}
& \frac{2}{\pi x^{2}}(x-\sin x \\
& \frac{2}{\pi x^{2}}(1-\sin x) \\
& \frac{2}{\pi x}(1-\sin x) \\
& \frac{2}{\pi x^{2}}(x-\cos x)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{2}{\pi x^{2}}(x-\sin x$
${ }^{4)}$ The solution of the integral equation $\cos 2 s=\frac{1}{\pi} \int_{-\infty}^{* \infty} \frac{f(t) d t}{s-t}$ is equal to ${ }^{1 \text { point }}$
$\cos 2 t$
$\sin 2 t$
$-\cos 2 t$
$-\sin 2 t$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\sin 2 t$
${ }^{5)}$ The solution of the integral equation $\sin \frac{s}{2}=\frac{1}{\pi} \int_{-\pi}^{* \pi} \frac{f(t) d t}{t-s}$ is
$-\cos \frac{t}{2}$
$\cos \frac{t}{2}$
$-\sin \frac{t}{2}$
$\sin \frac{t}{2}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\cos \frac{t}{2}$
6) The infinite Hilbert transform of the Dirac - delta function $\delta(t)$ is

1 point

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{1}{\pi s}$
7) Let a functional $I[y(x)]$ defined on the class $\mathcal{C}^{\prime}[0,1]$ be given by

1 point $I[y(x)]=\int_{0}^{1}\left[1+y(x)+y^{2}(x)\right] d x$, then which one is not false.

$$
\begin{gathered}
I[x]=\frac{3}{2} \\
I[1]=1 \\
I\left[x^{2}\right]=\frac{8}{3} \\
I[2 x]=7
\end{gathered}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
I\left[x^{2}\right]=\frac{8}{3}
$$

8)

1 point
Let a and b be two constants and $y \in \mathcal{C}^{\prime}[a, b]$. Consider $I[y]=\int_{a}^{b}\left[1+y^{2}+y^{\prime 2}\right] d x$ and $J[y]=\frac{\int_{a}^{b}\left(y+y^{\prime}\right) d x}{\int_{a}^{b}\left(1+y^{\prime 2}\right) d x}$. Then

I is linear but not a non local functional
J is linear and a non local functional

I is non linear and a non local functional
J is non linear and a non local functional.
No, the answer is incorrect.
Score: 0
Accepted Answers:
J is non linear and a non local functional.

```
9)1 point
Let }y\in\mp@subsup{\mathcal{C}}{}{\prime}[a,b],where a and b are two constants such that a<b. Consider I[y]=y(\underline{a
and J[y]= 庳
    Both I and J are linear functionals
    Neither I nor J is a linear functional
    I is a linear functional
    J is a linear functional.
    No, the answer is incorrect.
    Score: 0
    Accepted Answers:
    I is a linear functional
10)
    1 point
Consider the statements
```

(A) Every problem of geodesics may be considered as an isoperimetric problem.
(B) Every isoperimetric problem may be considered as a problem of geodesics
Then
only (A) is true
only (B) is true
both (A) and (B) are true
both (A) and (B) are false.
No, the answer is incorrect.
Score: 0
Accepted Answers:
only (A) is true

