Courses » Integral Equations, calculus of variations and its applications		
Init 8 - Week	Announcements Course Ask a Question Progress Men 7	itor FAQ
Course outline	Assignment 7	
How to access the portal	The due date for submitting this assignment has passed. Due on 2018-09-19 As per our records you have not submitted this assignment. Due on 2018-09-19	9, 23:59 IS ⁻
Week-1	1) The solution of the Cauchy type integral equation	1 p
Week 2	$of \ the \ first \ kind \ \int_{-1}^{*1} rac{g(t)dt}{t-s} = 1, \ -1 < s < 1 \ is$	
Week 3		
Week 4	$g(s) = rac{s}{\pi \sqrt{(1-s^2)}}$	
Week 5	$\pi\sqrt{(1-s^2)}$	
Week 6	$g(s) = rac{s+c}{\sqrt{1-s^2}}$	
Week 7	$\sqrt{(1-3)}$	
Cauchy type integral equations-I	$g(s)=rac{s}{\sqrt{(1-s^2)}}$	
Cauchy type integral equations-II	$a(s) = \frac{s+c}{s+c}$	
Cauchy type integral equations-III	$g(s) = \frac{1}{\pi\sqrt{(1-s^2)}}$	
Cauchy type integral equations-IV	Score: 0	
Cauchy type integral equations-V	$g(s) = \frac{s+c}{\pi\sqrt{(1-s^2)}}$	
Quiz : Assignment 7	2) The solution of the Cauchy type integral equation	1 μ
New Lesson	of the second kind $q(s) = s^2 + \frac{2}{2} \int_{-\infty}^{s_1} \frac{g(t)dt}{dt}$ is	
Solution of Assignment 7	$\pi J_0 t-s$	
Week 8	$s^{2} = 2 = \int^{1} (1-t)^{\alpha} t^{3-\alpha} = c$	
Week 9	$g(s) = -rac{1}{5} + rac{1}{5\pi s^{1-lpha}(1-s)^{lpha}} \int_{0}^{\infty} rac{1}{(t-s)} dt + rac{1}{\sqrt{5}s^{1-lpha}(1-s)^{lpha}} \ , \ 0 < s < 1$	
Week 10	$s^2 = 1$ $\int_{-1}^{1} (1-t)^{\alpha} t^{3-\alpha} = c$	
Week 11	$g(s) = -rac{5}{5} + rac{1}{s^{1-lpha}(1-s)^{lpha}} \int_{0}^{-rac{(1-s)^{-1}}{(t-s)}} dt + rac{1}{\sqrt{5}s^{1-lpha}(1-s)^{lpha}} \ , \ 0 < s < 1$	
Week 12	$e^2 d f^1 (1-t)^{\alpha} t^{3-\alpha}$	
WEEKLY FEEDBACK	$g(s) = - rac{s}{5} + rac{lpha}{ds} \int_{0}^{-} rac{(1-\epsilon)^{-ar{ u}}}{(t-s)} dt + rac{c}{s^{1-lpha}(1-s)^{lpha}} , \; 0 < s < 1$	
DOWNLOAD VIDEOS	$g(s) = -rac{s^2}{5} + rac{d}{ds} \int_0^1 rac{(1-t)^lpha t^{1-lpha}}{(t-s)} dt + rac{c}{\sqrt{5}s^{1-lpha}(1-s)^lpha} , \ 0 < s < 1$	
	No, the answer is incorrect. Score: 0	

NASSCOM®

Government of India Ministry of Human Resource Develop

National Programme on Technology Enhanced Learning

Integral Equations, calculus of variations and its...

Coose

$$\frac{1}{1} \frac{1}{\sqrt{1+\alpha_1}} + \frac{1}{\sqrt{1+\alpha_2}}$$
No, the server is incorrect.
Some 0
Accepted Answers:
 $\sqrt{1+\alpha_2}$
 3^{-1} The value of the integral $\int_{0}^{\infty} \frac{\sin n\pi}{\pi(1-x^2)} dx$ is
 $\frac{\pi}{2}$
 π
 $\frac{\pi}{3}$
 2π
No, the server is incorrect.
Score 0
Accepted Answers:
 π
 $\frac{\pi}{3}$
 2π
No, the server is incorrect.
Score 0
Accepted Answers:
 π
 $\frac{\pi}{3}$
 2π
No, the server is incorrect.
Score 0
Accepted Answers:
 π
 $\frac{\pi}{3}$
 2π
No, the server is incorrect.
Score 0
Accepted Answers:
 π
 $2\ln(2 + \sqrt{3})$
 9 The integral $I = \int_{0}^{\pi} \left(\frac{\alpha - s}{s}\right)^{1/2} \frac{ds}{(u-s)(s-1)}$, when $0 < t < u$ is equal to
 $\frac{\pi\sqrt{3}}{\{u(u-t)^2\}^{1/3}}$
 $\frac{\sqrt{3}}{\{u(u-t)^2\}^{1/3}}$
 $\frac{\sqrt{3}}{\{u(u-t)^2\}^{1/3}}$

No, the answer is incorrect. Score: 0 Accepted Answers: $\sqrt{3} \Big\{ \overline{t(u-t)^2} \Big\}^{1/3}$ 1 point 7) The function $f: [-1,1] \rightarrow Q$ defined by $f(x_1,x_2) = |2x_1 - 3x_2|$ is Lipschitz continuous with Lipschitz co 01 O 2 3 5 No, the answer is incorrect. Score: 0 Accepted Answers: 3 8) The function $f(x) = x^{3/4}, \ 0 \le x < \infty$ is α – Holder continuous if α is equal to 1 point 1 0 1/2 1/4 3/4 No, the answer is incorrect. Score: 0 Accepted Answers: 3/4 9) The function $f(x) = x^{1/2}$, $x \in [0,1]$ is Holder continuous where the exponent α is equal to 1 point 0 1 0 1/2 3/4 2/3 No, the answer is incorrect. Score: 0 **Accepted Answers:** 1/2 10)Let f be α – Holder continuous on an interval $I \subset \mathbb{R}$ with $0 < \alpha \leq 1$ then 1 point f is a constant function \bigcirc $f \ is \ differentiable$ \bigcirc f is uniformly continuous \bigcirc $none \ of \ these$ No, the answer is incorrect. Score: 0 Accepted Answers: $f \ is \ uniformly \ continuous$ **Previous Page** End

Integral Equations, calculus of variations and its...