Courses " Integral Equations,calculus of variations and its applications

Unit 8 - Week 7

Course outline

How to access the

 portal
Week-1

Week 2

Week 3

Week 4

Week 5

Week 6
Week 7
Cauchy type integral equations-I

Cauchy type integral equations-II

Cauchy type integral equations-III

Cauchy type integral equations-IV

Cauchy type integral equations-V

Quiz : Assignment 7
New Lesson
Solution of Assignment 7

Week 8

Week 9

Week 10

Week 11

Week 12
WEEKLY FEEDBACK

DOWNLOAD VIDEOS

Assignment 7

The due date for submitting this assignment has passed.
Due on 2018-09-19, 23:59 IST.
As per our records you have not submitted this assignment.

1) The solution of the Cauchy type integral equation of the first kind $\int_{-1}^{* 1} \frac{g(t) d t}{t-s}=1,-1<s<1$ is

$$
g(s)=\frac{s}{\pi \sqrt{\left(1-s^{2}\right)}}
$$

$g(s)=\frac{s+c}{\sqrt{\left(1-s^{2}\right)}}$
$g(s)=\frac{s}{\sqrt{\left(1-s^{2}\right)}}$
$g(s)=\frac{s+c}{\pi \sqrt{\left(1-s^{2}\right)}}$
No, the answer is incorrect. Score: 0

Accepted Answers:
$g(s)=\frac{s+c}{\pi \sqrt{\left(1-s^{2}\right)}}$
2) The solution of the Cauchy type integral equation

$$
\text { of the second kind } g(s)=s^{2}+\frac{2}{\pi} \int_{0}^{* 1} \frac{g(t) d t}{t-s} \text { is }
$$

$g(s)=-\frac{s^{2}}{5}+\frac{2}{5 \pi s^{1-\alpha}(1-s)^{\alpha}} \int_{0}^{1} \frac{(1-t)^{\alpha} t^{3-\alpha}}{(t-s)} d t+\frac{c}{\sqrt{5} s^{1-\alpha}(1-s)^{\alpha}}, 0<s<1$
$g(s)=-\frac{s^{2}}{5}+\frac{1}{s^{1-\alpha}(1-s)^{\alpha}} \int_{0}^{1} \frac{(1-t)^{\alpha} t^{3-\alpha}}{(t-s)} d t+\frac{c}{\sqrt{5} s^{1-\alpha}(1-s)^{\alpha}}, 0<s<1$
$g(s)=-\frac{s^{2}}{5}+\frac{d}{d s} \int_{0}^{1} \frac{(1-t)^{\alpha} t^{3-\alpha}}{(t-s)} d t+\frac{c}{s^{1-\alpha}(1-s)^{\alpha}}, 0<s<1$
$g(s)=-\frac{s^{2}}{5}+\frac{d}{d s} \int_{0}^{1} \frac{(1-t)^{\alpha} t^{1-\alpha}}{(t-s)} d t+\frac{c}{\sqrt{5} s^{1-\alpha}(1-s)^{\alpha}}, 0<s<1$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\begin{aligned}
& \frac{\pi}{t(t-u)} \\
& \frac{\pi}{\sqrt{t(t-u)}} \\
& \sqrt{\frac{\pi}{t(t-u)}} \\
& \sqrt{\frac{\pi}{(t-u)}}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{\pi}{\sqrt{t(t-u)}}$
${ }^{4)}$ The value of the integral $\int_{0}^{\infty} \frac{\sin \pi x}{x\left(1-x^{2}\right)} d x$ is

No, the answer is incorrect.
Score: 0
Accepted Answers:
π
5) $\int_{1 / 2}^{1} \frac{d u}{\sqrt{u-1 / 2} \sqrt{u-1 / 3}}$ is equal to
$2 \ln (\sqrt{2}+\sqrt{3})$
$\ln (\sqrt{3}+\sqrt{2})+\ln (2+\sqrt{3})$
$2 \ln (2+\sqrt{3})$
$2 \ln (3+\sqrt{2})$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$2 \ln (2+\sqrt{3})$
6) The integral $I=\int_{0}^{u}\left(\frac{u-s}{s}\right)^{1 / 3} \frac{d s}{(u-s)(s-t)}$, when $0<t<u$ is equal to
$\frac{\pi \sqrt{3}}{\left\{t(u-t)^{2}\right\}^{1 / 3}}$
$\frac{\pi}{\sqrt{3}\left\{t(u-t)^{2}\right\}^{1 / 3}}$

$$
\begin{aligned}
& \frac{\sqrt{3}}{\left\{t(u-t)^{2}\right\}^{1 / 3}} \\
& \frac{\pi}{\sqrt{3}\{t(u-t)\}^{1 / 3}}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{\pi}{\sqrt{3}\left\{t(u-t)^{2}\right\}^{1 / 3}}$
7)

The function $f:[-1,1] \rightarrow Q$ defined by $f\left(x_{1}, x_{2}\right)=\left|2 x_{1}-3 x_{2}\right|$ is Lipschitz continuous with Lipschitz cc

No, the answer is incorrect.
Score: 0
Accepted Answers
3
8) The function $f(x)=x^{3 / 4}, 0 \leq x<\infty$ is $\alpha-H o l d e r ~ c o n t i n u o u s ~ i f ~ \alpha ~ i s ~ e q u a l ~ t o ~$

No, the answer is incorrect.
Score: 0
Accepted Answers
3/4
9) The function $f(x)=x^{1 / 2}, x \in[0,1]$ isHolder continuous where the exponent α is equal to 1 point
-1/2
-3/4
$2 / 3$
No, the answer is incorrect.
Score: 0
Accepted Answers:
1/2
10) Let f be $\alpha-$ Holder continuous on an interval $I \subset \mathbb{R}$ with $0<\alpha \leq 1$ then
fis a constant function
fis differentiable
fis uniformly continuous
none of these
No, the answer is incorrect.
Score: 0
Accepted Answers:
f is uniformly continuous

Previous Page

