Courses » Integral Equations,calculus of variations and its applications

Announcements Course Ask a Question Progress Mentor FAQ

Unit 7 - Week

Course
 outline

How to access
the portal

Week-1

Week 2

Week 3

Week 4

Week 5

Week 6

- Neumann series and
resolvent
kernels-II
Equations with convolution type kernels-।
- Equations with convolution type kernels-II

Singular
integral
equations-I

- Singular
integral
equations-II
Quiz :
Assignment 6
coll.tinnn n

Assignment 6

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-12, 23:59 IST. assignment.

1) With the aid of resolvent kernel, the solution of the integral equation 1 point $\phi(x)=1-2 x-\int_{0}^{x} e^{x^{2}-t^{2}} \phi(t) d t, i s$
$e^{x^{2}-x}(1+2 x)$

$$
e^{x^{2}-x}-2 x
$$

$$
e^{x^{2}-x}
$$

$$
e^{x^{2}-x}+2 x
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$e^{x^{2}-x}-2 x$
2) With the aid of resolvent kernel, the solution of the integral equation 1 point $\phi(x)=x e^{\frac{x^{2}}{2}}+\int_{0}^{x} e^{-(x-t)} \phi(t) d t i s$
$e^{\frac{x^{2}}{2}}(x+1)-1$ $e^{\frac{x^{2}}{2}}(x+1)$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning

Funded by

No, the answer is incorrect.
Score: 0

Accepted Answers:
$\phi_{1}(x)=3 e^{x}-2, \phi_{2}(x)=3 e^{x}-2 e^{2 x}$
6) The solution of the system of integral equations

$$
\begin{aligned}
& \phi_{1}(x)=x+\int_{0}^{x} \phi_{2}(t) d t \\
& \phi_{2}(x)=1-\int_{0}^{x} \phi_{1}(t) d t \\
& \phi_{3}(x)=\sin x+\frac{1}{2} \int_{0}^{x}(x-t) \phi_{1}(t) d t, i s \\
& \phi_{1}(x)=2 \sin x, \phi_{2}(x)=2 \cos x, \phi_{3}(x)=x \\
& \phi_{1}(x)=2 \sin x, \phi_{2}(x)=2 \cos x+1, \phi_{3}(x)=x^{2} \\
& \phi_{1}(x)=2 \sin x, \phi_{2}(x)=2 \cos x-1, \phi_{3}(x)=x^{2} \\
& \phi_{1}(x)=2 \sin x, \phi_{2}(x)=2 \cos x-1, \phi_{3}(x)=x
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\phi_{1}(x)=2 \sin x, \phi_{2}(x)=2 \cos x-1, \phi_{3}(x)=x$
7) The solution of the Cauchy type integral equation

$$
x^{2}=\int_{2}^{x} \frac{y(t) d t}{\left(x^{2}-t^{2}\right)^{\frac{1}{2}}} 2<x<4 i s
$$

$$
y(x)=\frac{4 x\left(x^{2}-2\right)\left(x^{2}+4\right)^{\frac{-1}{2}}}{\pi}
$$

$$
y(x)=\frac{4 x\left(x^{2}+2\right)\left(x^{2}-4\right)^{\frac{-1}{2}}}{\pi}
$$

$$
y(x)=\frac{4 x\left(x^{2}-2\right)\left(x^{2}-4\right)^{\frac{-1}{2}}}{\pi}
$$

$$
y(x)=\frac{4\left(x^{2}-2\right)\left(x^{2}-4\right)^{\frac{-1}{2}}}{\pi}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$y(x)=\frac{4 x\left(x^{2}-2\right)\left(x^{2}-4\right)^{\frac{-1}{2}}}{\pi}$
${ }^{8)}$ The solution of the Cauchy integral equation $x=\int_{x}^{4} \frac{g(t) d t}{(t-x)^{\frac{1}{3}}}$, is

$$
g(x)=\frac{-3}{2 \pi}(4-x)^{\frac{2}{3}}(8-3 x)
$$

$$
g(x)=\frac{-3 \sqrt{3}}{2 \pi}(4-x)^{\frac{-2}{3}}(8-3 x)
$$

$$
g(x)=\frac{-3}{2 \pi}(4-x)^{\frac{2}{3}}(3 x-8)
$$

$$
g(x)=\frac{\sqrt{3}}{2 \pi}(4-x)^{\frac{-2}{3}}(3 x-8)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
g(x)=\frac{\sqrt{3}}{2 \pi}(4-x)^{\frac{-2}{3}}(3 x-8)
$$

9) The solution of Cauchy type integral equation

$$
\begin{aligned}
& 1=\int_{\frac{\pi}{2}}^{x} \frac{g(t) d t}{(\cos t-\cos x)^{\frac{1}{2}}}, \frac{\pi}{2}<x<\pi i s \\
& g(t)=\frac{1}{\pi}(\sin t)(-\cos t)^{\frac{1}{2}} \\
& g(t)=\frac{1}{\pi}(\sin t)(-\cos t)^{\frac{-1}{2}} \\
& g(t)=\frac{1}{\pi}(-\cos t)^{\frac{1}{2}} \\
& g(t)=\frac{-1}{\pi}(\sin t)(-\cos t)^{\frac{-1}{2}}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
g(t)=\frac{1}{\pi}(\sin t)(-\cos t)^{\frac{-1}{2}}
$$

10The solution of the Cauchy type integral equation

$$
\begin{aligned}
& x=\int_{x}^{4} \frac{u(t) d t}{(t-x)^{\frac{1}{4}}} 2<x<4 i s \\
& u(t)=\frac{-16}{5 \sqrt{2} \pi}(4-t)^{\frac{1}{4}}(t+1) \\
& u(t)=\frac{-2 \sqrt{2}}{\pi}(4-t)^{\frac{-3}{4}}(3-t) \\
& u(t)=\frac{-2 \sqrt{2}}{\pi}(4-t)^{\frac{-3}{4}}(5-t) \\
& u(t)=\frac{-2 \sqrt{2}}{\pi}(4-t)^{\frac{3}{4}}(3-t)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$u(t)=\frac{-2 \sqrt{2}}{\pi}(4-t)^{\frac{-3}{4}}(3-t)$

Previous Page

