

National Programme on Technology Enhanced Learning

Week 10		Accepted Answers:	
WEEK ID	ce De	$e^{rac{x^2}{2}}(x+1)-1$	
Week 11		3) The solution of the convolution type integral equation	1 point
Week 12		$\phi(x)=e^x+2\int_0^x\cos(x-t)\phi(t)dt,\ is$	
WEEKLY			
FEEDBACK		e^x	
DOWNLOAD		T(1 + 1)	
VIDEOS		$e^{\omega}(1+x)$	
		$e^x(1+x)^2$	
		e(1+x)	
		$e^{x}(1+x^{2})$	
		No the answer is incorrect	
		Score: 0	
		Accepted Answers:	
		$e^x (1+x)^2$	
		4) The solution of the convolution type integral equation $\phi(x)=e^{2x}+\int_0^x e^{t-x}\phi(t)dt~is$	1 point
		e^{2x}	
		$\frac{e^{2x}}{2}$	
		$(3e^{2x}-1)$	
		$(3e^{2x}-1)$	
		2 No the answer is incorrect	
		Score: 0	
		Accepted Answers:	
		$rac{(3e^{2x}-1)}{2}$	
		5) The solution of the system of integral equations	1 point
		$\phi_1(x)=e^{2x}+\int_0^x\phi_2(t)dt,$	
		$\phi_2(x) = 1 - \int_0^x e^{2(x-t)} \phi_1(t) dt,$	
		is	
		$\phi_1(x)=e^x-2, \ \ \phi_2(x)=2e^x-3e^{2x}$	
		$\phi_1(x)=3e^x-2, \; \phi_2(x)=2e^x-3e^{2x}$	
		$\phi_1(x)=3e^x-2, \; \phi_2(x)=3e^x-2e^{2x}$	
		$\phi_1(x)=e^x-2, \; \phi_2(x)=3e^x-2e^{2x}$	
		No, the answer is incorrect. Score: 0	

Accepted Answers: $\phi_1(x) = 3e^x - 2, \ \phi_2(x) = 3e^x - 2e^{2x}$ 6) The solution of the system of integral equations 1 point $\phi_1(x) = x + \int_0^x \phi_2(t) dt$ $\phi_2(x) = 1 - \int_0^x \phi_1(t) dt$ $\phi_3(x) = \sin x + \frac{1}{2} \int_0^x (x-t)\phi_1(t)dt, \ is$ $\phi_1(x)=2\sin x, \; \phi_2(x)=2\cos x, \; \phi_3(x)=x$ $\phi_1(x) = 2\sin x, \ \phi_2(x) = 2\cos x + 1, \ \phi_3(x) = x^2$ $\phi_1(x)=2\sin x, \; \phi_2(x)=2\cos x-1, \; \phi_3(x)=x^2$ $\phi_1(x) = 2\sin x, \ \phi_2(x) = 2\cos x - 1, \ \phi_3(x) = x$ No. the answer is incorrect. Score: 0 **Accepted Answers:** $\phi_1(x) = 2\sin x, \ \phi_2(x) = 2\cos x - 1, \ \phi_3(x) = x$ 7) The solution of the Cauchy type integral equation 1 point $x^2 = \int_2^x rac{y(t)dt}{(x^2 - t^2)^{rac{1}{2}}} \,\,\, 2 < x < 4 \, is$ $y(x)=rac{4x(x^2-2)(x^2+4)^{rac{-1}{2}}}{\pi}$ $y(x)=rac{4x(x^2+2)(x^2-4)^{rac{-1}{2}}}{\pi}$ $y(x) = rac{4x(x^2-2)(x^2-4)^{rac{-1}{2}}}{\pi}$ $y(x) = rac{4(x^2-2)(x^2-4)^{rac{-1}{2}}}{\pi}$ No, the answer is incorrect. Score: 0 Accepted Answers: $y(x) = rac{4x(x^2-2)(x^2-4)^{rac{-1}{2}}}{\pi}$ ⁸⁾ The solution of the Cauchy integral equation $x = \int_x^4 rac{g(t)dt}{(t-x)^{rac{1}{3}}} \ , \ is$ 1 point $g(x) = rac{-3}{2\pi} \left(4 - x\right)^{rac{2}{3}} (8 - 3x)$ $g(x)=rac{-3\sqrt{3}}{2\pi}\left(4-x
ight)^{rac{-2}{3}}(8-3x)$ $g(x) = rac{-3}{2\pi} \left(4-x
ight)^{rac{2}{3}} (3x-8)$

Integral Equations, calculus of variations and its...

https://onlinecourses.nptel.ac.in/noc18_ma09/un...

$$g(x) = \frac{\sqrt{3}}{2\pi} (4 - x)^{\frac{2}{3}} (3x - 8)$$
No, the answer is incorrect.
Score: 0
Accepted Answers:
 $g(x) = \frac{\sqrt{3}}{2\pi} (4 - x)^{\frac{2}{3}} (3x - 8)$
9) The solution of Cauchy type integral equation
 $1 = \int_{\frac{\pi}{2}}^{x} \frac{g(t)dt}{(\cos t - \cos x)^{\frac{1}{3}}}, \frac{\pi}{2} < x < \pi \text{ is}$
 $g(t) = \frac{1}{\pi} (\sin t)(-\cos t)^{\frac{1}{2}}$
 $g(t) = \frac{1}{\pi} (\sin t)(-\cos t)^{\frac{3}{2}}$
 $g(t) = \frac{1}{\pi} (-\cos t)^{\frac{1}{2}}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
 $g(t) = \frac{1}{\pi} (\sin t)(-\cos t)^{\frac{3}{2}}$
10) The solution of the Cauchy type integral equation
 $x = \int_{x}^{4} \frac{u(t)dt}{(t - x)^{\frac{1}{2}}} 2 < x < 4 \text{ is}$
 $u(t) = \frac{-36}{5\sqrt{2\pi}} (4 - t)^{\frac{3}{4}} (3 - t)$
 $u(t) = \frac{-3\sqrt{2}}{\pi} (4 - t)^{\frac{3}{4}} (3 - t)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
 $u(t) = \frac{-3\sqrt{2}}{\pi} (4 - t)^{\frac{3}{4}} (3 - t)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
 $u(t) = \frac{-3\sqrt{2}}{\pi} (4 - t)^{\frac{3}{4}} (3 - t)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
 $u(t) = \frac{-3\sqrt{2}}{\pi} (4 - t)^{\frac{3}{4}} (3 - t)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
 $u(t) = -\frac{-3\sqrt{2}}{\pi} (4 - t)^{\frac{3}{4}} (3 - t)$
Previous Page
End

Integral Equations, calculus of variations and its...