Courses » Integral Equations,calculus of variations and its applications

Announcements Course Ask a Question Progress Mentor FAQ

Unit 6 - Week 5

Course outline	
	How to access the portal
	Week-1
	Week 2
	Week 3
	Week 4
	Week 5
	Classical Fredholm theory: Fredholm first theorem-I
	Classical Fredholm theory: Fredholm first theorem-II
	Classical Fredholm theory: Fredholm second theorem and third theorem
	Method of successive approximations
	- Neumann series and resolvent

Assignment 5

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-12, 23:59 IST. assignment.

```
1) Using the method of successive approximations, the solution
1 point
of the integral equation \(\phi(x)=\frac{x^{2}}{2}+x-\int_{0}^{x} \phi(t) d t, \phi_{0}(x)=x\) is
    \(\phi(x)=x+1\)
    \(\phi(x)=-x\)
    \(\phi(x)=x\)
    \(\phi(x)=x-1\)
```

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 \(\phi(x)=x\)
 2)
 Using the method of successive approximations, the solution of the integral equat $\phi(x)=1+\int_{0}^{x}(x-t) \phi(t) d t, \phi_{0}(x)=1$ is

$$
\begin{aligned}
& \phi(x)=\sin x \\
& \phi(x)=\cos x \\
& \phi(x)=\sinh x \\
& \phi(x)=\cosh x
\end{aligned}
$$

[^0]
Week 7

The resolvent kernel of the Volterra integral equation

Week 8
Week 9

Week 10

Week 11

Week 12

WEEKLY

FEEDBACK
DOWNLOAD VIDEOS

No, the answer is incorrect.
Score: 0
Accepted Answers:
$e^{\frac{3(x-t)}{2}}$
4) The resolvent kernel of the Volterra integral equation

$$
\begin{aligned}
& u(x, t)=e^{x \sin x}-\int_{0} \\
& \left(\frac{2+\cos x}{2+\cos t}\right) e^{x-t} \\
& \left(\frac{2+\cos x}{2+\cos t}\right) e^{t-x} \\
& \left(\frac{2+\cos x}{2+\cos t}\right) e^{2(x-t)} \\
& \left(\frac{2+\cos x}{2+\cos t}\right)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left(\frac{2+\cos x}{2+\cos t}\right) e^{t-x}$
5) Consider the Fredholm integral equation

$$
y(x)=\lambda \int_{0}^{1}(2 x-t) y(t) d t
$$

where λ is a constant. Then the resolvent kernel $\Gamma(x, t ; \lambda)$ is given by

$$
\begin{aligned}
& \frac{2 x-t-\lambda\left(\frac{2}{3}-x-t+2 x t\right)}{1-\frac{\lambda}{2}+\frac{\lambda^{2}}{6}} \\
& \frac{2 x-t-\lambda\left(\frac{2}{3}-x-t+2 x t\right)}{1-\frac{\lambda}{2}-\frac{\lambda^{2}}{6}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 x-t+\lambda\left(\frac{2}{3}-x-t+2 x t\right)}{1-\frac{\lambda}{2}+\frac{\lambda^{2}}{6}} \\
& \text { None of these }
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{2 x-t-\lambda\left(\frac{2}{3}-x-t+2 x t\right)}{1-\frac{\lambda}{2}+\frac{\lambda^{2}}{6}}$
6) Consider the Fredholm integral equation

$$
y(x)=\lambda \int_{-1}^{1}(x+t+1) y(t) d t
$$ where λ is a constant. Then the resolvent kernel $\Gamma(x, t ; \lambda)$ is given by

$$
\begin{aligned}
& \frac{(x+t+1)-2 \lambda\left(x t+\frac{1}{3}\right)}{1+2 \lambda+\frac{4 \lambda^{2}}{3}} \\
& \frac{(x+t+1)+2 \lambda\left(x t+\frac{1}{3}\right)}{1-2 \lambda+\frac{4 \lambda^{2}}{3}} \\
& \frac{(x+t+1)+2 \lambda\left(x t+\frac{1}{3}\right)}{1-2 \lambda-\frac{4 \lambda^{2}}{3}} \\
& \text { none of these }
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\frac{(x+t+1)+2 \lambda\left(x t+\frac{1}{3}\right)}{1-2 \lambda-\frac{4 \lambda^{2}}{3}}
$$

7) Consider the Fredholm integral equation
$y(x)=\lambda \int_{a}^{b} u(x) u(t) y(t) d t, b>a$.
If $u(x)$ is a non zero continuous function on $[a, b]$, then the integral equation has
a unique solution for each λ
no solution for all λ
infinitely many solutions for some value of λ
none of these
No, the answer is incorrect.
Score: 0
Accepted Answers:
infinitely many solutions for some value of λ

Consider the Fredholm integral equation

$y(x)=f(x)+\lambda \int_{0}^{2 \pi} \sin x \cos t y(t) d t$.
Then the integral equation has

```
a unique solution for each \lambda
no solution for any \lambda
infinitely many solutions for some \lambda
    none of these
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
a unique solution for each λ
9) Consider the Fredholm integral equation

1 point
$y(x)=x+\lambda \int_{0}^{1}\left(4 x t-x^{2}\right) y(t) d t$.
Then

$$
y(x)=24 x-9 x^{2} \text { for } \lambda=1
$$

$$
y(x)=24 x-9 x^{2} \text { for } \lambda=-1
$$

$y(x)=2 x$ for $\lambda=0$
none of these
No, the answer is incorrect.
Score: 0
Accepted Answers:
$y(x)=24 x-9 x^{2}$ for $\lambda=1$
10)

1 point
Consider the Fredholm integral equation
$y(x)=f(x)+\int_{0}^{1} x e^{t} y(t) d t$
where $f(x)$ is a non zero continuous function. Then, the integral equation has

$$
\text { no solution if } \int_{0}^{1} f(x) e^{x} d x=0
$$

a solution if $\int_{0}^{1} f(x) x d x=0$
a solution if $\int_{0}^{1} f(x) e^{x} d x=0$
none of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
a solution if $\int_{0}^{1} f(x) e^{x} d x=0$

[^0]: © 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs

