

Integral Equations, calculus of variations and its...

5) Using Green function the solution of the BVP **0** points

$$y^{iv} = 1, \ y(0) = y'(0) = y''(1) = y'''(1) = 0$$
 is given by
 $y(x) = \frac{x^2}{24} (x^2 - 4x - 6)$
 $y(x) = x^2(\frac{x^2}{24} - 4x + 6)$
 $y(x) = \frac{x^2}{24} (x^2 + 2x - 6)$
 $y(x) = x^2(\frac{x^2}{24} + 4x - 6).$
No, the answer is incorrect.
Score: 0
Accepted Answers:
 $y(x) = \frac{x^2}{24} (x^2 - 4x - 6)$
6) **1** point
The integral equation corresponding to the BVP $xy'' + y' = x + \lambda y, \ y(1) = y(e) = (y(x) = f(x) + \lambda \int_1^e G(x, \xi)y(\xi)d\xi, \ where \ f(x) \ is \ given \ by$
 $f(x) = \frac{1}{4} (e^2 \ln x + x^2 - 1)$

$$f(x) = \frac{1}{4} \left[(e^{-11} x + x^{-1}) \right]$$

$$f(x) = \frac{1}{4} \left[(1 - e^{2}) \ln x + 1 - x^{2} \right]$$

$$f(x) = \frac{1}{4} \left[(e^{2} - 1) \ln x + 1 - x^{2} \right]$$

$$f(x) = \frac{1}{4} \left[(1 - e^{2}) \ln x + x^{2} - 1 \right].$$

No, the answer is incorrect. Score: 0

Accepted Answers:

 $f(x) = rac{1}{4} \left[(1-e^2) \ln x + x^2 - 1
ight].$

7)

1 point

If the associated integral equation for the BVP $y'' = \lambda y + e^x$, y(0) = y(1) = 0 is given by $y(x) = \lambda \int_0^1 G(x,\xi)y(t)dt + f(x)$, then f(x) is given by

 $f(x) = e^{x} + ex - x - 1$ $f(x) = e^{x} - ex + x - 1$ $f(x) = e^{x} - ex + x + 1$ $f(x) = e^{x} - ex - x - 1$ No, the answer is incorrect. Score: 0
Accepted Answers: $f(x) = e^{x} - ex + x - 1$ 8) Consider the Fredholm integral equation $y(x) = \lambda \int_0^{\pi} \cos x \cos ty(t) dt$. 1 point The root of $D_3(1)$, the resolvent determinant of size 3×3 is

 $f(x) = \frac{1}{\pi}$ $f(x) = \frac{4}{\pi}$ $f(x) = \frac{\pi}{2}$ $f(x) = \frac{2}{\pi}$ No, the answer is incorrect.

Score: 0 Accepted Answers:

 $f(x) = rac{2}{\pi}$

9)

1 point

Consider the Fredholm integral equation $y(x) = f(x) + \lambda \int_0^{2\pi} (\sin x - \sin t) y(t) dt$. Using Fredholm alternative, the resolving kernel $\Gamma(x,t;\lambda)$ is given by

 $(\sin x - \sin t) + \lambda \pi (1 + 2 \sin x \sin t)$ $1 + 4\pi^2 \lambda^2$ $(\sin x - \sin t) - \lambda \pi (1 + 2 \cos x \cos t)$ $1 + 2\pi^2 \lambda^2$ $(\sin x - \sin t) - \lambda \pi (1 + 2 \sin x \sin t)$ $1 + 2\pi^2 \lambda^2$ None of these.No, the answer is incorrect. Score: 0
Accepted Answers: $(\sin x - \sin t) - \lambda \pi (1 + 2 \sin x \sin t)$

 $\frac{(\sin x - \sin t) - \lambda \pi (1 + 2 \sin x \sin t)}{1 + 2\pi^2 \lambda^2}$

10)

1 point

Consider the Fredholm integral equation $y(x) = f(x) + \lambda \int_{-1}^{1} (x + t + 1)y(t)dt$. Usir Fredholm alternative, the resolving kernel $\Gamma(x, t; \lambda)$ is

Integral Equations, calculus of variations and its...

$\frac{\textbf{Accepted Answers:}}{\frac{3(x+t+1)+2\lambda(3xt+1)}{3-6\lambda-4\lambda^2}}$	
Previous Page	End