Courses » Integral Equations,calculus of variations and its applications

Unit 4 - Week 3

Course
Outline
How to access the portal
Week-1
Week 2
Week 3
Fredholm integral
equations with
symmetric
kernels:
Properties of
eigenvalues and
eigenfunctions
Fredholm integral
equations with
symmetric
kernels: Hilbert
Schmidt theory
Fredholm integral
equations with
symmetric
kernels: Examples
- Construction of
Green's function-I
Wen Construction of
Green's function-II
Quiz : Assignment
3

Assignment 3

The due date for submitting this assignment has passed. Due on 2018-09-05, 23:59 IST. As per our records you have not submitted this assignment.
1)

0 points
The symmetric Fredholm integral equation $y(x)=f(x)+\lambda \int_{-1}^{1} x^{3} t^{3} y(t) d t$, has
no solution for $\lambda=\frac{7}{2}$ and $f(x)=x$
a unique solution for $\lambda=\frac{2}{7}$ and $f(x)=x$
a unique solution for $\lambda=\frac{7}{2}$ and $f(x)=x^{2}$
no solution for $\lambda=\frac{2}{7}$ and $f(x)=x^{2}$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
a unique solution for $\lambda=\frac{2}{7}$ and $f(x)=x$
2)

1 point
The symmetric Fredholm integral equation $y(x)=e^{x}+\lambda \int_{-1}^{1}(x t+2 t+2 x+4) y(t) d t$, has
no solution for $\lambda=\frac{1}{9}$
a unique solution for $\lambda=\frac{1}{9}$
infinitely many solutions for $\lambda=\frac{3}{26}$
a unique solution for $\lambda=\frac{3}{26}$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
a unique solution for $\lambda=\frac{1}{9}$

© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

NDTET National Programme on Technology Enhanced Learning

Week 12

WEEKLY

FEEDBACK

DOWNLOAD VIDEOS
infinitely many solutions for $\lambda=1$ and $f(x)=\cos x$
unique solution for $\lambda=\pi$ and $f(x)=\sin x$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
unique solution for $\lambda=\pi$ and $f(x)=\sin x$.
4)

1 point
Consider the Fredholm integral equation $y(x)=f(x)+\lambda \int_{0}^{2 \pi}(\sin x+\sin t) y(t) d t$. Then it has
no solution for $\lambda=\frac{1}{\pi}, f(x)=\sin x$
unique solution for $\lambda=\frac{1}{\pi \sqrt{2}}, f(x)=\sin x$
unique solution for $\lambda=1, f(x)=\cos x$
infinitely many solutions for $\lambda=\frac{1}{\pi \sqrt{2}}, f(x)=\sin x$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
unique solution for $\lambda=1, f(x)=\cos x$
5) Consider the following symmetric Fredholm integral equation

1 point $\sin 4 x=\lambda \int_{0}^{\pi / 2} K(x, t) y(t) d t$, where
$K(x, t)= \begin{cases}\sin x \cos t, & 0 \leq x \leq t ; \\ \sin t \cos x, & t \leq x \leq \pi / 2 .\end{cases}$
Then it has
no solution for all value of λ
unique solution $y(x)=\sin 4 x$ for only one value of λ
unique solution $y(x)=\sin 4 x$ for only two value of λ

None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
unique solution $y(x)=\sin 4 x$ for only one value of λ
6)

Consider the following Fredholm integral equation $y(x)=f(x)+\lambda \int_{0}^{2 \pi} \sin (x+t) y(t) d t$. Th using Hilbert Schmidt theorem we obtain
$y(x)=x+\frac{4}{3}(2 \cos x+\sin x)$ for $\lambda=\frac{2}{\pi}$ and $f(x)=x$.
$y(x)=x+2 \cos x+\sin x$ for $\lambda=\frac{1}{\pi}$ and $f(x)=x$.
$y(x)=1+\sin x+\cos x$ for $\lambda=-\frac{1}{\pi}$ and $f(x)=1$.
$y(x)=1+\sin x-\cos x$ for $\lambda=-\frac{1}{\pi}$ and $f(x)=1$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$y(x)=x+\frac{4}{3}(2 \cos x+\sin x)$ for $\lambda=\frac{2}{\pi}$ and $f(x)=x$.
7) Consider the differential equation $2 y^{\prime \prime}(x)+y^{\prime}(x)+x y(x)=0$, and let the 1 point function $v(x)$ be defined as $v(x)\left[2 y^{\prime \prime}(x)+y^{\prime}(x)+x y(x)\right]=\left[A(x) y^{\prime}(x)+B(x) y(x)\right]^{\prime}$ for some twice differentiable functions $A(x)$ and $B(x)$. Then
$v(x)$ is a solution of the equation $2 y^{\prime \prime}(x)+y^{\prime}(x)+x y(x)=0$
$v(x)$ is a solution of the equation $2 y^{\prime \prime}(x)-y^{\prime}(x)+x y(x)=0$
$v(x)$ is a solution of the equation $2 y^{\prime \prime}(x)+x y(x)=0$
none of the above.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$v(x)$ is a solution of the equation $2 y^{\prime \prime}(x)-y^{\prime}(x)+x y(x)=0$
8)

Consider the Fredholm integral equation $y(x)=x+\lambda \int_{0}^{1} e^{x+t} y(t) d t$. Then it has a solution

$$
\begin{aligned}
& y(x)=x+\frac{2 e^{x}}{3-e^{2}} \text { for } \lambda=\frac{1}{e^{2}-1} \\
& y(x)=x+\frac{2 e^{x}}{e^{2}-1} \text { for } \lambda=1 \\
& y(x)=x+\frac{2 e^{x}}{3-e^{2}} \text { for } \lambda=1 \\
& y(x)=x+\frac{2 e^{x}}{e^{2}-1} \text { for } \lambda=-1
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$y(x)=x+\frac{2 e^{x}}{3-e^{2}}$ for $\lambda=1$
9)

1 point
Consider the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0$ with appropriate boundary conditio Then the adjoint equation is given by

$$
\begin{aligned}
& x^{2} v^{\prime \prime}+3 x v^{\prime}-3 v=0 \\
& x^{2} v^{\prime \prime}-3 x v^{\prime}-4 v=0 \\
& x^{2} v^{\prime \prime}-x v^{\prime}-4 v=0 \\
& \text { None of these. }
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$x^{2} v^{\prime \prime}+3 x v^{\prime}-3 v=0$

Consider the boundary value problem $y^{\prime \prime}(x)+2 y^{\prime}(x)+y(x)=f(x)$ with the boundary condit $y(0)=0=y(1)$. Then the Green's function $G(\xi, x)$ for the given boundary value problem is

$$
\begin{aligned}
& G(\xi, x)= \begin{cases}\xi(x-1) e^{\xi-x}, & 0 \leq \xi \leq x ; \\
x e^{\xi-x}(\xi-1), & x<\xi \leq 1 .\end{cases} \\
& G(\xi, x)= \begin{cases}(\xi-1) x e^{\xi-x}, & 0 \leq \xi \leq x ; \\
\xi e^{\xi-x}(x-1), & x<\xi \leq 1 .\end{cases} \\
& G(\xi, x)= \begin{cases}(\xi-1) \xi e^{\xi-x}, & 0 \leq \xi \leq x ; \\
\xi(\xi-1) e^{x-\xi}, & x<\xi \leq 1 .\end{cases}
\end{aligned}
$$

None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
None of these.

Previous Page

