Jnit 4 - Wee	Announcements Course Ask a Question Progress Mentor FAQ
Course outline	Assignment 3
How to access the	The due date for submitting this assignment has passed.Due on 2018-09-05, 23:59 ISTAs per our records you have not submitted this assignment.
portal	1) O poir
Week-1	The symmetric Fredholm integral equation $y(x) \ = \ f(x) + \lambda \int_{-1}^1 x^3 t^3 y(t) dt, \ has$
Week 2	
Week 3	no solution for $\lambda = \frac{1}{2}$ and $f(x) = x$
 Fredholm integral equations with symmetric kernels: Properties of eigenvalues and 	a unique solution for $\lambda = \frac{2}{7}$ and $f(x) = x$ a unique solution for $\lambda = \frac{7}{2}$ and $f(x) = x^2$
eigenfunctions Fredholm integral equations with symmetric kernels: Hilbert Schmidt theory	no solution for $\lambda = \frac{2}{7}$ and $f(x) = x^2$. No, the answer is incorrect. Score: 0
Fredholm integral equations with symmetric kernels: Examples	a unique solution for $\lambda = \frac{2}{7}$ and $f(x) = x$ 2) The symmetric Fredholm integral equation $y(x) = e^x + \lambda \int_{-1}^1 (xt + 2t + 2x + 4)y(t)dt$,
Construction of Green's function-I	
Construction of Green's function-II	no solution for $\lambda = rac{1}{9}$
Quiz : Assignment	a unique solution for $\lambda = rac{1}{9}$
Solution of Assignment 3	infinitely many solutions for $\lambda=rac{3}{26}$
Week 4	\bigcirc
Week 5	a unique solution for $\lambda = \frac{1}{26}$. No, the answer is incorrect.
Week 6	Score: 0
	Accepted Answers: a unique solution for $\lambda = \frac{1}{2}$

Funded by

Powered by

Integral Equations, calculus of variations and its...

https://onlinecourses.nptel.ac.in/noc18_ma09/un...

Week 12	
	infinitely many solutions for $\lambda = 1$ and $f(x) = \cos x$
WEEKLY FEEDBACK	
	$unique\ solution\ for\ \lambda=\pi\ and\ f(x)=\sin x.$
DOWNLOAD VIDEOS	No, the answer is incorrect.
	Score: 0
	Accepted Answers: unique solution for $\lambda = \pi$ and $f(x) = \sin x$.
	4) 1 noint
	Consider the Fredholm integral equation $y(x) = f(x) + \lambda \int_{0}^{2\pi} (\sin x + \sin t) y(t) dt$
	Then it has
	no solution for $\lambda = \frac{1}{2}$ $f(r) = \sin r$
	$\int \int $
	unique solution for $\lambda = \frac{1}{1}$ $f(x) = \sin x$
	$\pi\sqrt{2}, f(x) \text{for } x$
	unique solution for $\lambda = 1$ $f(r) = \cos r$
	\square
	in finitely many solutions for $\lambda = \frac{1}{2}$. $f(x) = \sin x$.
	$\pi\sqrt{2}$, $\mathbf{y}(\mathbf{x})$
	No, the answer is incorrect.
	Accepted Answers:
	$unique\ solution\ for\ \lambda=1,\ f(x)=\cos x$
	5) Consider the following symmetric Fredholm integral equation 1 point
	$\sin 4x = \lambda \int_0^{\pi/2} K(x,t) y(t) dt, \ where$
	$\int \sin x \cos t, 0 \le x \le t;$
	$K\left(x,t ight)=igg\{ \sin t\cos x, \ \ t\leq x\leq \pi/2.$
	Then it has
	0
	no solution for all value of λ
	$unique\ solution\ y(x)=\sin 4x\ for\ only\ one\ value\ of\ \lambda$
	unique solution $u(n) = \sin 4n$ for only two value of)
	anique solution $g(x) = \sin 4x$ for only two value of x
	None of these.
	No the answer is incorrect
	Score: 0
	Accepted Answers:
	$unique\ solution\ y(x)=\sin 4x\ for\ only\ one\ value\ of\ \lambda$
	6) 0 points
	Consider the following Fredholm integral equation $y(x) = f(x) + \lambda \int_0^{2\pi} \sin(x+t)y(t)dt$. The
	using Hilbert Schmidt theorem we obtain
	$y(x)=x+rac{4}{3}\left(2\cos x+\sin x ight)$ for $\lambda=rac{2}{\pi}~~and~f(x)=x.$
	$y(x)=x+2\cos x+\sin x \ for \ \lambda=rac{1}{\pi} \ and \ f(x)=x.$
	$y(x)=1+\sin x+\cos x \ for \ \lambda=-rac{1}{\pi} \ and \ f(x)=1.$

Integral Equations, calculus of variations and its...

 $y(x) = 1 + \sin x - \cos x$ for $\lambda = -\frac{1}{\pi}$ and f(x) = 1. No, the answer is incorrect. Score: 0 **Accepted Answers:** $y(x) = x + \frac{4}{3} (2 \cos x + \sin x)$ for $\lambda = \frac{2}{\pi}$ and f(x) = x. 7) Consider the differential equation 2y''(x) + y'(x) + xy(x) = 0, and let the 1 point function v(x) be defined as v(x)[2y''(x) + y'(x) + xy(x)] = [A(x)y'(x) + B(x)y(x)]'for some twice differentiable functions A(x) and B(x). Then v(x) is a solution of the equation 2y''(x) + y'(x) + xy(x) = 0 $v(x) \ is \ a \ solution \ of \ the \ equation \ 2y''(x) - y'(x) + xy(x) = 0$ \bigcirc v(x) is a solution of the equation 2y''(x) + xy(x) = 0 \bigcirc $none \ of \ the \ above.$ No, the answer is incorrect. Score: 0 **Accepted Answers:** v(x) is a solution of the equation 2y''(x) - y'(x) + xy(x) = 08) 1 point Consider the Fredholm integral equation $y(x) = x + \lambda \int_0^1 e^{x+t} y(t) dt$. Then it has a solution

$$y(x) = x + \frac{2e^x}{3-e^2} \text{ for } \lambda = \frac{1}{e^2-1}$$

$$y(x) = x + \frac{2e^x}{e^2-1} \text{ for } \lambda = 1$$

$$y(x) = x + \frac{2e^x}{3-e^2} \text{ for } \lambda = 1$$

$$y(x) = x + \frac{2e^x}{e^2-1} \text{ for } \lambda = -1.$$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$y(x) = x + \frac{2e^x}{3-e^2} \text{ for } \lambda = 1$$

-

9)

1 point

Consider the differential equation $x^2y'' + xy' - 4y = 0$ with appropriate boundary condition. Then the adjoint equation is given by

$$x^{2}v'' + 3xv' - 3v = 0$$

$$x^{2}v'' - 3xv' - 4v = 0$$

$$x^{2}v'' - xv' - 4v = 0$$
None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$$x^{2}v'' + 3xv' - 3v = 0$$

Integral Equations, calculus of variations and its...

https://onlinecourses.nptel.ac.in/noc18_ma09/un...

10)

1 point

Consider the boundary value problem y''(x) + 2y'(x) + y(x) = f(x) with the boundary condit y(0) = 0 = y(1). Then the Green's function $G(\xi, x)$ for the given boundary value problem is

$$G(\xi, x) = egin{cases} \xi(x-1)e^{\xi-x}, & 0 \leq \xi \leq x; \ xe^{\xi-x}(\xi-1), & x < \xi \leq 1. \end{cases}$$
 $G(\xi, x) = egin{cases} (\xi-1)xe^{\xi-x}, & 0 \leq \xi \leq x; \ \xi e^{\xi-x}(x-1), & x < \xi \leq 1. \end{cases}$
 $G(\xi, x) = egin{cases} (\xi-1)\xi e^{\xi-x}, & 0 \leq \xi \leq x; \ \xi(\xi-1)e^{x-\xi}, & x < \xi \leq 1. \end{cases}$

None of these.

No, the answer is incorrect. Score: 0

Accepted Answers: None of these.

Previous Page

End