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Assignment 3
The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.
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Score: 0
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No, the answer is incorrect.

Score: 0

Accepted Answers:

The symmetric Fredholm integral equation y(x) = f(x) + λ y(t)dt, has∫ 1
−1 x

3t3

no solution for λ = and f(x) = x7
2

a unique solution for λ = and f(x) = x2
7

a unique solution for λ = and f(x) =7
2 x2

no solution for λ = and f(x) = .2
7 x2

a unique solution for λ = and f(x) = x2
7

The symmetric Fredholm integral equation y(x) = + λ (xt+ 2t+ 2x+ 4)y(t)dt, hasex ∫ 1
−1

no solution for λ = 1
9

a unique solution for λ = 1
9

infinitely many solutions for λ = 3
26

a unique solution for λ = .3
26

a unique solution for λ = 1
9

The Fredholm integral equation y(x) = f(x) + λ cosx cos ty(t)dt, has∫ 2π
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4) 1 point

5) 1 point
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infinitely many solutions for λ = 1 and f(x) = cosx

unique solution for λ = π and f(x) = sinx.

unique solution for λ = π and f(x) = sinx.

Consider the Fredholm integral equation y(x) = f(x) + λ (sinx+ sin t)y(t)dt.∫ 2π
0

Then it has

no solution for λ = , f(x) = sinx1
π

unique solution for λ = , f(x) = sinx1
π 2√

unique solution for λ = 1, f(x) = cosx

infinitely many solutions for λ = , f(x) = sinx.1
π 2√

unique solution for λ = 1, f(x) = cosx

Consider the following symmetric Fredholm integral equation

sin 4x = λ K(x, t)y(t)dt, where∫ π/2
0

K(x, t) = { sinx cos t,
sin t cosx,

0 ≤ x ≤ t;
t ≤ x ≤ π/2.

Then it has

no solution for all value of λ

unique solution y(x) = sin 4x for only one value of λ

unique solution y(x) = sin 4x for only two value of λ

None of these.

unique solution y(x) = sin 4x for only one value of λ

Consider the following Fredholm integral equation y(x) = f(x) + λ sin(x+ t)y(t)dt. Th∫ 2π
0

using Hilbert Schmidt theorem we obtain

y(x) = x+ (2 cosx+ sinx) for λ = and f(x) = x.4
3

2
π

y(x) = x+ 2 cosx+ sinx for λ = and f(x) = x.1
π

y(x) = 1 + sinx+ cosx for λ = − and f(x) = 1.1
π
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7) 1 point

8) 1 point

9) 1 point
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y(x) = 1 + sinx− cosx for λ = − and f(x) = 1.1
π

y(x) = x+ (2 cosx+ sinx) for λ = and f(x) = x.4
3

2
π

Consider the differential equation 2 (x) + (x) + xy(x) = 0, and let they′′ y′

function v(x) be defined as

v(x)[2 (x) + (x) + xy(x)] = [A(x) (x) +B(x)y(x)y′′ y′ y′ ]′

for some twice differentiable functions A(x) and B(x). Then

v(x) is a solution of the equation 2 (x) + (x) + xy(x) = 0y′′ y′

v(x) is a solution of the equation 2 (x) − (x) + xy(x) = 0y′′ y′

v(x) is a solution of the equation 2 (x) + xy(x) = 0y′′

none of the above.

v(x) is a solution of the equation 2 (x) − (x) + xy(x) = 0y′′ y′

Consider the Fredholm integral equation y(x) = x+ λ y(t)dt. Then it has a solution∫ 1
0 e

x+t

y(x) = x+ for λ =2ex

3−e2
1
−1e2

y(x) = x+ for λ = 12ex

−1e2

y(x) = x+ for λ = 12ex

3−e2

y(x) = x+ for λ = −1.2ex

−1e2

y(x) = x+ for λ = 12ex

3−e2

Consider the differential equation + x − 4y = 0 with appropriate boundary conditionx2y′′ y′

Then the adjoint equation is given by

+ 3x − 3v = 0x2v′′ v′

− 3x − 4v = 0x2v′′ v′

− x − 4v = 0x2v′′ v′

None of these.

+ 3x − 3v = 0x2v′′ v′
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10) 1 point
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Consider the boundary value problem (x) + 2 (x) + y(x) = f(x) with the boundary condity′′ y′

y(0) = 0 = y(1). Then the Gree s function G(ξ,x) for the given boundary value problem isn′

G(ξ,x) = { ξ(x− 1) ,eξ−x

x (ξ− 1),eξ−x
0 ≤ ξ ≤ x;

x < ξ ≤ 1.

G(ξ,x) = { (ξ− 1)x ,eξ−x

ξ (x− 1),eξ−x
0 ≤ ξ ≤ x;

x < ξ ≤ 1.

G(ξ,x) = { (ξ− 1)ξ ,eξ−x

ξ(ξ− 1) ,ex−ξ

0 ≤ ξ ≤ x;

x < ξ ≤ 1.

None of these.

None of these.
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