Courses » Integral Equations,calculus of variations and its applications

Announcements Course Ask a Question Progress Mentor FAQ

Unit 3 - Week

Course outline

How to access the portal

Week-1

Week 2

- Fredholm integral equation with separable kernel: Theory

Fredholm
integral equation with separable
kernel:
Examples

- Solution of integral equations by successive substitutions

Solution of integral equations by successive approximations

Solution of integral equations by successive approximations: Resolvent kernel

Assignment 2

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-08-15, 23:59 IST. assignment.

1) For what values of a and b, the function $(a+b x) e^{-x}$ is a 1 point solution of $y(x)=4 \int_{0}^{\infty} e^{-(x+t)} y(t) d t+(x-1) e^{-x}$

$$
\begin{aligned}
& a=1, b=-1 \\
& a=-1, b=1 \\
& a=0, b=-1 \\
& a=0, b=1
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$a=0, b=1$
2) For what values of a and b, the function $a+b x$ is a solution of

1 point

$$
y(x)=-\int_{0}^{1} x^{2} e^{x t} y(t) d t+(x+1)+(x-1) e^{x}
$$

$a=0, b=1$
$a=1, b=0$
$a=1, b=-1$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning

Week 4

Week 5

Week 6
Week 7

Week 8

Week 9

Week 10
Week 11
Week 12
WEEKLY
FEEDBACK

DOWNLOAD VIDEOS
no eigenvalue
an eigenvalue $\lambda=3 / 2$
an eigenvalue $\lambda=-1$
an eigenvalue $\lambda=1$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
no eigenvalue
${ }^{4)}$ The Fredholm integral equation $y(x)=\lambda \int_{-1}^{1}\left(5 x t^{3}+4 x^{2} t\right) y(t) d t$ has $\quad 1$ point an eigenvalue
$\lambda=-1 / 2$
$\lambda=1 / 2$
$\lambda=2$
$\lambda=-2$.
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\lambda=1 / 2
$$

5) The eigenvalues and respective eigenfunctions for the

1 point Fredholm integral equation
$y(x)=\lambda \int_{0}^{1} K(x, t) y(t) d t$, where the kernel is of the form $K(x, t)= \begin{cases}t(x+1), & 0 \leq x \leq t ; \\ x(t+1), & t \leq x \leq 1 .\end{cases}$
are given by

$$
\lambda_{0}=1, y_{0}(x)=e^{-x}
$$

$\lambda_{0}=-1, y_{0}(x)=e^{x}$
$\lambda_{n}=-n^{2} \pi^{2}, y_{n}(x)=\sin n \pi x, \quad n=1,2,3, \ldots$
$\lambda_{n}=-n^{2} \pi^{2}, y_{n}(x)=\sin n \pi x+n \pi \cos n \pi x, n=1,2,3, \ldots$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\lambda_{n}=-n^{2} \pi^{2}, y_{n}(x)=\sin n \pi x+n \pi \cos n \pi x, n=1,2,3, \ldots$

The Fredholm integral equation $y(x)=x+\lambda \int_{0}^{2 \pi}|\pi-t| \sin x y(t) d t$ has a solution of the form

$$
\text { For } \lambda=\frac{1}{\pi^{3}}, y(x)=\sin x+x
$$

For $\lambda=\frac{1}{\pi}, y(x)=\cos x+x$

For $\lambda=\pi^{3}, y(x)=-\sin x+x$

$$
\text { For } \lambda=-\frac{1}{\pi}, y(x)=\cos x-x
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
For $\lambda=\frac{1}{\pi^{3}}, y(x)=\sin x+x$
7)

Consider the Fredholm integral equation $y(x)=x+\lambda \int_{-1}^{1}\left(x t+x^{2} t^{2}\right) y(t) d t$. Then the successive substitution method, the unique solution of given equation exists at least for

$$
|\lambda|<1
$$

$$
|\lambda|<\frac{1}{2}
$$

$$
|\lambda|<\frac{1}{3}
$$

$$
|\lambda|<\frac{1}{4} .
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$|\lambda|<\frac{1}{4}$.
8) Let the iterated kernels for the Fredholm integral equation $y(x)=\int_{0}^{\pi} K(x, t) y(t) d t$, with $K(x, t)=e^{x} \cos t$ be denoted by $K_{i}, i=1,2,3 \ldots$ Then

$$
\begin{aligned}
& K_{2}(x, t)=\left(\frac{e^{\pi}+1}{2}\right) e^{x} \cos t \\
& K_{3}(x, t)=\frac{1}{4}\left(e^{\pi}+1\right)^{2} e^{x} \cos t \\
& K_{2}(x, t)=\left(\frac{e^{\pi}-1}{2}\right) e^{x} \sin t \\
& K_{3}(x, t)=\frac{1}{4}\left(e^{\pi}-1\right)^{2} e^{x} \cos t .
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
K_{3}(x, t)=\frac{1}{4}\left(e^{\pi}+1\right)^{2} e^{x} \cos t
$$

9)

The resolvent kernel $\Gamma(x, t ; \lambda)$ corresponding to the Fredholm integral equation $y(x)=f(x)+\lambda \int_{-1}^{1} x^{2} t^{2} y(t) d t$ is given by

$$
\begin{aligned}
& \frac{x^{2} t^{2}}{5-2 \lambda} ;|\lambda|<\frac{2}{5} \\
& \frac{5 x^{2} t^{2}}{5-2 \lambda} ;|\lambda|<\frac{5}{2} \\
& \frac{x^{2} t^{2}}{2 \lambda-3} ;|\lambda|<\frac{2}{3} \\
& \frac{3 x^{2} t^{2}}{2 \lambda-3} ;|\lambda|<\frac{3}{2} .
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{5 x^{2} t^{2}}{5-2 \lambda} ;|\lambda|<\frac{5}{2}$
10)For the Fredholm integral equation $y(x)=x+\lambda \int_{0}^{1}(2 x-t) y(t) d t$, the solution, by the iterative method, exists provided $|\lambda|<\lambda_{1}$. Then

$$
\begin{aligned}
& \lambda_{1}=\sqrt{\frac{3}{2}} \\
& \lambda_{1}=2 \\
& \lambda_{1}=3 \\
& \lambda_{1}=\sqrt{\frac{5}{2}} .
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\lambda_{1}=\sqrt{\frac{3}{2}}$

Previous Page

