

Funded by

ASS

Week 8	The integral equation corresponding to the differential equation $(0) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	
Week 9	$y''(x) + xy'(x) + y(x) = 0, \ y(0) = 1, \ y'(0) = 0 \ is$	
Week 10	$\phi(x)=1+\int_x^x(2x-t)\phi(t)dt$	
Week 11	$\phi(x)=-1+\int_0^x(t-2x)\phi(t)dt$	
Week 12		
WEEKLY	$\phi(x) = -1 - \int_0^\infty (t - 2x)\phi(t)dt$	
	$\phi(x)=1-\int_0^x(t-2x)\phi(t)dt$	
VIDEOS	No, the answer is incorrect.	
	Accepted Answers:	
	$\phi(x)=-1+\int_0^x(t-2x)\phi(t)dt$	
	4) The integral equation corresponding to the boundary value problem $y''(x)+\lambda y(x)=0,\ y(1)=1,\ y(l)=0$ is	0 points
	•	
	$y(x) = \lambda \int_0^l K(x,t) y(t) dt \ where$	
	$K(x,t) = \left\{ egin{array}{cc} rac{t}{l} \left(l-x ight) & 0 < t < x \end{array} ight.$	
	$\prod_{i=1}^{l} \left(x, t ight) = iggl\{ rac{x}{l} \left(l - t ight) \mid x < t < l iggr\}$	
	(r) (r) (r) (r)	
	$y(x) = \lambda \int_0 K(x,t) y(t) dt \text{ where}$	
	$K(x,t) = \left\{ egin{array}{ccc} rac{7}{l} (x-t) & 0 < l < x \ rac{x}{2} (l-t) & x < t < l \end{array} ight.$	
	$y(x) = \lambda \int_0^l K(x,t) y(t) dt \ where$	
	$K(x,t) = \left\{egin{array}{cc} rac{t}{l}\left(x-l ight) & 0 < t < x \ rac{x}{T}\left(t-l ight) & x < t < l \end{array} ight.$	
	•	
	$y(x) = \lambda \int_0^l K(x,t) y(t) dt \ where$	
	$K(x,t) = \left\{ egin{array}{cc} rac{l}{t}\left(l-x ight) & 0 < t < x ight. ight.$	
	$(rac{t}{x} \ (l-t) x < t < l$	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	$y(x) = \lambda \int_0^t K(x,t) y(t) dt \ where$	
	$K(x,t) = egin{cases} rac{ au}{l}(l-x) & 0 < t < x \ rac{x}{l}(l-t) & x < t < l \end{cases}$	
	5) The integral equation corresponding to the boundary value problem $y''(x) + xy(x) = 1, \; y(0) = 0, \; y(1) = 0 \; is$	0 points

$$y(x) = \frac{x(1+x)}{2} + \int_{0}^{1} K(x, t)y(t)dt \text{ where}$$

$$K(x, t) = \begin{cases} t^{2}(1-x) & t < x \\ x(1-t) & x < t \end{cases}$$

$$y(x) = \frac{x(1-x)}{2} + \int_{0}^{1} K(x, t)y(t)dt \text{ where}$$

$$K(x, t) = \begin{cases} t^{2}(1-x) & t < x \\ x(1-t) & x < t \end{cases}$$

$$y(x) = \frac{x(1+x)}{2} + \int_{0}^{1} K(x, t)y(t)dt \text{ where}$$

$$K(x, t) = \begin{cases} t^{2}(1-x) & t < x \\ x(1+t) & x < t \end{cases}$$

$$y(x) = \frac{x(1+x)}{2} + \int_{0}^{1} K(x, t)y(t)dt \text{ where}$$

$$K(x, t) = \begin{cases} x^{2}(1-x) & t < x \\ x(t(1-t) & x < t \end{cases}$$
No, the answers:

$$y(x) = \frac{x(1+x)}{2} + \int_{0}^{1} K(x, t)y(t)dt \text{ where}$$

$$K(x, t) = \begin{cases} t^{2}(1-x) & t < x \\ x(t(1-t) & x < t \end{cases}$$
No, the answers:

$$y(x) = \frac{x(1+x)}{2} + \int_{0}^{1} K(x, t)y(t)dt \text{ where}$$

$$K(x, t) = \begin{cases} t^{2}(1-x) & t < x \\ x(t(1-t) & x < t \end{cases}$$
1 point

$$y(x) = \frac{x(1+x)}{2} + \int_{0}^{1} K(x, t)y(t)dt$$

$$y'(x) + y(x) = 1, y(0) = y'(0) = 0$$

$$y''(x) + xy(x) = 1, y(0) = y'(0) = 0$$

$$y''(x) + xy(x) = 1, y(0) = y'(0) = 0$$

$$y''(x) + xy(x) = 1, y(0) = y'(0) = 0$$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$y''(x) + xy(x) = 1, y(0) = y'(0) = 0$$

$$y''(x) + xy(x) = 1, y(0) = y'(0) = 0$$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$y''(x) + xy(x) = 1, y(0) = y'(0) = 0$$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$y''(x) + xy(x) = 1, y(0) = y'(0) = 0$$

$$y''(x) + xy(x) = 1, y(0) = y'(0) = 0$$
1 point

$$y(x) = 1 + \int_{0}^{x} ty(t)dt + \int_{x}^{1} xy(t)dt is$$

$$y'' + y = 0, y(0) = 1, y'(1) = 0$$

$$y'' + xy = 0, y(0) = 1, y'(1) = 0$$

$$y'' + y = 0, y(0) = 1 = y'(1)$$

$$y'' + y = 0, y(0) = 1 = y'(1)$$

$$y'' + y = 0, y(0) = 1 = y'(1)$$

Score: 0	
Accepted Answers:	
y''+y=0,y(0)=1,y'(1)=0	
8) The solution of the integro $-$ differential equation	1 point
$\phi'(x) = \phi(x) - \int_0^x (x-t) \phi'(t) dt + \int_0^x \phi(t) dt + x, \; \phi(0) = -1$	is
$1-2e^x$	
$r - e^{-x}$	
$-e^{-x}$	
•	
$-e^x$	
No, the answer is incorrect.	
Score: 0	
$-e^x$	
9) The solution of the integro – differential equation	1 point
$\phi''(x)+\int_0^x e^{2(x-t)}\phi'(t)dt=e^{2x}, \; \phi(0)=\phi'(0)=0 \; is$	
$x(e^x-1)$	
Ò Í	
xe^x-e^x+1	
$1-e^x+x$	
$x^2 + e^x - x - 1$	
No the answer is incorrect	
Score: 0	
Accepted Answers:	
$xe^x - e^x + 1$	
10 <i>Whichone of the functions is a solution of V olterraintegral equation</i>	uation 1 point
$\int_0^{\infty} (x-t)^2 u(t) dt = x^3$	
1	
3	
2	
1/3	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
× ·	

Integral Equations, calculus of variations and its...