## Courses » Integral Equations,calculus of variations and its applications

## Unit 12 - Week

11

## Course outline

How to access the portal

Week-1

Week 2

## Week 3

Week 4
Week 5

Week 6

Week 7

Week 8

Week 9
Week 10

## Week 11

Invariance of Euler's equation and
isoperimetric
problem-I
Isoperimetric
problem-II
Variational
problem
involving a
annditinnal

## Assignment 11

The due date for submitting this assignment has passed. Due on 2018-10-17, 23:59 IST.
As per our records you have not submitted this assignment.

1) The shortest distance from the point $(-1,5)$ to the parabola $y^{2}=x$ is 1 point

$$
\sqrt{5}
$$



2

$$
2 \sqrt{5}
$$

$$
2 \sqrt{2}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$2 \sqrt{5}$
2)

## 1 point

The shortest distance between the circle $x^{2}+y^{2}=1$ and the straight line $x+y=4$

$$
2 \sqrt{2}
$$

$$
2 \sqrt{2}+1
$$

3

$$
2 \sqrt{2}-1
$$

No, the answer is incorrect.
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

In association with

Funded by
problems with moving boundaries-I

Quiz :
Assignment 11
Solutions of assignment-11

Week 12
WEEKLY FEEDBACK

DOWNLOAD VIDEOS $r=a \sec (\theta \sin \alpha+b) ; a$ and $b$ are arbitrary constants
$r=a \cos (\theta \sin \alpha+b) ; a$ and $b$ are arbitrary constants
$r=a \sec (\theta \cos \alpha+b) ; a$ and $b$ are arbitrary constants

None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$r=a \sec (\theta \sin \alpha+b) ; a$ and $b$ are arbitrary constants
4) The extremal of the functional
$I[y(x)]=\int_{0}^{\frac{\pi}{2}}\left(y^{\prime 2}-y^{2}+4 y \sin ^{2} x\right) d x ; y(0)=y\left(\frac{\pi}{2}\right)=\frac{1}{3}$
is given by

$$
y(x)=\frac{\sin x+\cos x}{3}
$$

$$
y(x)=\frac{2 \sin x+\cos 2 x}{3}
$$

$$
y(x)=\frac{-2 \sin x-\cos 2 x+2}{3}
$$

None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
None of these.
5) The extremal of the functional

$$
I[y(x)]=\int_{0}^{2} y^{\prime 2} d x ; y(0)=0, y(2)=1
$$

and subjected to the condition $\int_{0}^{2} y d x=1$ is given by

$$
\begin{aligned}
& y(x)=\frac{x}{2} \\
& y(x)=\frac{x(x+2)}{8} \\
& y(x)=\sin \pi x
\end{aligned}
$$

None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
y(x)=\frac{x}{2}
$$

6) 

The extremal of the functional
$I[y(x)]=\int_{0}^{1}\left(x^{2}+y^{2}\right) d x ; y(0)=0, y(1)=0$
and subjected to the condition $\int_{0}^{1} y^{2} d x=2$ is given by

$$
\begin{aligned}
& y(x)=\sin m \pi x ; m \in \mathbb{Z} \\
& y(x)=\cos m \pi x ; m \in \mathbb{Z} \\
& y(x)=\sin 2 m \pi x ; m \in \mathbb{Z}
\end{aligned}
$$

None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
None of these.
7) The solid figure of revolution of given volume, which passes through 1 point origin and extremizes its surface is

Cylinder

Sphere

Cone

None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Sphere
8)

1 point
The extremal of the functional $I[y(x)]=\int_{0}^{a} \pi y^{2} d x ; y(0)=0, y(a)=0$, and subject. to the condition $\int_{0}^{a} 2 \pi y \sqrt{1+y^{\prime 2}} d x=$ constant is given by

$$
\begin{aligned}
& y^{2}+x^{2}=\alpha^{2} \\
& (y-\alpha)^{2}+x^{2}=\alpha^{2} \\
& (x-\alpha)^{2}+y^{2}=\alpha^{2}
\end{aligned}
$$

None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$(x-\alpha)^{2}+y^{2}=\alpha^{2}$

The differential equation for the extremal of the
iso - perimetric problem $I[y(x)]=\int_{0}^{a}\left(x^{2} y^{\prime 2}+y^{2}\right) d x$ with boundary
conditions $y(0)=0=y(a)$ and subjected to the
condition $\int_{0}^{a} x^{2} y^{2} d x=1$, is ( $\lambda$ being a constant)

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda x^{2}-1\right) y=0 \\
& x^{2} y^{\prime \prime}+2 x y^{\prime}+(\lambda x-1) y=0 \\
& x^{2} y^{\prime \prime}+2 x y^{\prime}-\left(\lambda x^{2}+1\right) y=0
\end{aligned}
$$

None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-\left(\lambda x^{2}+1\right) y=0
$$

10) 

Extremal of the functional $I[y(x)]=\int_{a}^{b}\left(y \sqrt{1+y^{\prime 2}}\right) d x ; y(a)=y_{1}, y(b)=y_{2}$ and subjected to the condition $\int_{a}^{b} \sqrt{1+y^{\prime 2}} d x=l i s\left(c_{1}, c_{2}\right.$ and $\lambda$ are suitable constants $)$

$$
\begin{aligned}
& y(x)+\lambda=c_{1} \cosh \frac{x-c_{2}}{c_{1}} \\
& y(x)+\lambda=c_{1} \sinh \frac{x-c_{2}}{c_{1}} \\
& y(x)=\lambda c_{1} \sinh \left(x-c_{1}\right)
\end{aligned}
$$

None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$y(x)+\lambda=c_{1} \cosh \frac{x-c_{2}}{c_{1}}$

## Previous Page

