

Unit 12 - Week 11

Course outline	Assignment 11
How to access	The due date for submitting this assignment has passed. Due on 2018-10-17, 23:59 IST. As per our records you have not submitted this assignment.
	1) The shortest distance from the point $(-1, 5)$ to the parabola $y^2 = x$ is 1 point
Week-1	
Week 2	$\sqrt{5}$
Week 3	2
Week 4	
Week 5	$2\sqrt{5}$
Week 6	$2\sqrt{2}$
Week 7	No, the answer is incorrect.
Week 8	Accepted Answers:
Week 9	$2\sqrt{5}$
Week 10	2) 1 point The shortest distance between the circle $x^2 + y^2 = 1$ and the straight line $x + y =$
Week 11	0
Invariance of Euler's equation and isoperimetric problem-I	$2\sqrt{2}$ $2\sqrt{2}+1$
Isoperimetric problem-II	3
Variational problem involving a	$2\sqrt{2}-1$ No, the answer is incorrect.

Funded by

NASSCOM®

Integral Equations, calculus of variations and its...


```
The extremal of the functional
I[y(x)] = \int_0^1 (x^2 + y'^2) dx; \ y(0) = 0, \ y(1) = 0
and subjected to the condition \int_0^1 y^2 dx = 2 is given by
    y(x) = \sin m\pi x; m \in \mathbb{Z}
    y(x)=\cos m\pi x;m\in\mathbb{Z}
     y(x)=\sin 2m\pi x;m\in\mathbb{Z}
    None of these.
  No, the answer is incorrect.
  Score: 0
  Accepted Answers:
  None of these.
 7) The solid figure of revolution of given volume, which passes through 1 point
    origin and extremizes its surface is
     Cylinder
     \bigcirc
    Sphere
     Cone
     None of these.
  No, the answer is incorrect.
  Score: 0
  Accepted Answers:
  Sphere
 8)
                                                                                       1 point
The extremal of the functional I[y(x)] = \int_0^a \pi y^2 dx; \ y(0) = 0, \ y(a) = 0, \ and \ subject
to the condition \int_0^a 2\pi y \sqrt{1+y'^2} dx = constant is given by
    y^2 + x^2 = \alpha^2
    (y-lpha)^2+x^2=lpha^2
    (x-lpha)^2+y^2=lpha^2
     None of these.
  No, the answer is incorrect.
  Score: 0
  Accepted Answers:
  (x-\alpha)^2 + y^2 = \alpha^2
 9)
                                                                                       1 point
```

The differential equation for the extremal of the iso – perimetric problem $I[y(x)] = \int_0^a (x^2y'^2 + y^2)dx$ with boundary conditions y(0) = 0 = y(a) and subjected to the condition $\int_0^a x^2y^2dx = 1$, is (λ being a constant)

$$x^{2}y'' + xy' + (\lambda x^{2} - 1)y = 0$$

 $x^{2}y'' + 2xy' + (\lambda x - 1)y = 0$
 $x^{2}y'' + 2xy' - (\lambda x^{2} + 1)y = 0$
None of these.

No, the answer is incorrect. Score: 0 Accepted Answers:

 $x^2y''+2xy'-(\lambda x^2+1)y=0$

10)

1 point

Extremal of the functional $I[y(x)] = \int_a^b (y\sqrt{1+y'^2})dx$; $y(a) = y_1$, $y(b) = y_2$ and subjected to the condition $\int_a^b \sqrt{1+y'^2}dx = l$ is $(c_1, c_2 \text{ and } \lambda \text{ are suitable constants})$

$$y(x) + \lambda = c_1 \cosh \frac{x - c_2}{c_1}$$

$$y(x) + \lambda = c_1 \sinh \frac{x - c_2}{c_1}$$

$$y(x) = \lambda c_1 \sinh(x - c_1)$$

$$y(x) = \lambda c_1 \sinh(x - c_1)$$
None of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$y(x) + \lambda = c_1 \cosh \frac{x - c_2}{c_1}$$

Previous Page

End

Integral Equations, calculus of variations and its...