Unit 11 - Week 10

$$
\text { 4) The extremal of the functional } \int_{0}^{1}\left\{2 x+\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right\} d t
$$

$$
\text { satisfying the boundary conditions } x(0)=0, y(0)=1, x(1)=1, y(1)=-1 \text { is }
$$

5) The equation $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$ is a Euler equation for some functional $I[y(x)]=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x$ where $F\left(x, y, y^{\prime}\right)$ is the solution of the partial differential equation

No, the answer is incorrect.
Score: 0
Accepted Answers:
$F_{y^{\prime} y^{\prime} x}+y^{\prime} F_{y^{\prime} y^{\prime} y}+f F_{y^{\prime} y^{\prime} y^{\prime}}+f_{y^{\prime}} F_{y^{\prime} y^{\prime}}=0$
6) Consider the functional
$I[\phi]=\int_{-\infty}^{\infty}\left[p(x)\left(\phi^{\prime}(x)\right)^{2}+2 \phi(x+1) \phi(x-1)-\phi^{2}(x)-2 \phi(x) f(x)\right] d x$
then the differential difference equation for the argument function $\phi(x)$ is
$\left(p \phi^{\prime}\right)-\phi(x+2)-\phi(x-2)+\phi(x)+f(x)=0$
$\left(p \phi^{\prime}\right)^{\prime}-\phi(x+2)-\phi(x-2)+\phi(x)+f(x)=0$
$\left(p \phi^{\prime}\right)^{\prime}-\phi(x+2)-\phi(x-2)+f(x)=0$
$\left(p \phi^{\prime}\right)+\phi(x+2)+\phi(x-2)-\phi(x)+f(x)=0$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left(p \phi^{\prime}\right)^{\prime}-\phi(x+2)-\phi(x-2)+\phi(x)+f(x)=0$
7) The extremal of the functional

$$
\begin{aligned}
& x=\left(1-\frac{\pi}{8} t\right) \cos t+\left(\frac{\pi}{2}-\frac{t}{2}\right) \sin t, \\
& \text { No, the answer is incorrect. } \\
& \text { Score: } 0 \\
& \text { Accepted Answers: } \\
& x=\left(1-\frac{\pi}{8} t\right) \cos t+\left(\frac{\pi}{2}-\frac{t}{2}\right) \sin t \\
& y=\left(1-\frac{\pi}{8} t\right) \cos t+\left(\frac{\pi}{2}-\frac{t}{2}\right) \sin t+\frac{\pi}{4} \sin t-\cos t \\
& x=t, y=-2 t+1 \\
& x=\frac{t(t+1)}{2}, y=-t \\
& x=t, y=-t \\
& x=\frac{t(t+1)}{2}, y=-2 t+1 \\
& \text { No, the answer is incorrect. } \\
& \text { Score: } 0 \\
& \text { Accepted Answers: } \\
& x=\frac{t(t+1)}{2}, y=-2 t+1 \\
& F_{y^{\prime} y^{\prime} x}+y^{\prime} F_{y^{\prime} y^{\prime} y}+f F_{y^{\prime} y^{\prime} y^{\prime}}+f_{y^{\prime}} F_{y^{\prime} y^{\prime}}=0 \\
& F_{y^{\prime} y^{\prime} x}+y^{\prime} F_{y^{\prime} y^{\prime} y}+f F_{y^{\prime} y^{\prime} y^{\prime}}+F_{y^{\prime} y^{\prime}}=0 \\
& F_{y^{\prime} y^{\prime} x}+F_{y^{\prime} y^{\prime} y}+f F_{y^{\prime} y^{\prime} y^{\prime}}+f_{y^{\prime}} F_{y^{\prime} y^{\prime}}=0 \\
& F_{y^{\prime} y^{\prime} x}+y^{\prime} F_{y^{\prime} y^{\prime} y}+F_{y^{\prime} y^{\prime} y^{\prime}}+f_{y^{\prime}} F_{y^{\prime} y^{\prime}}=0
\end{aligned}
$$

$$
\begin{gathered}
z=\frac{y^{3}}{3}+c_{1}(y) \ln y+c_{2}(x) \\
z=\frac{y^{3}}{9}+c_{1}(x) \ln x+c_{2}(x) \\
z=\frac{y^{3}}{9}+c_{1}(y) \ln x+c_{2}(y) \\
z=\frac{y^{3}}{9}+c_{1}(x) \ln y+c_{2}(x)
\end{gathered}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$z=\frac{y^{3}}{9}+c_{1}(x) \ln y+c_{2}(x)$
8) The extremal of the functional

$$
I[z(x, y)]=\iint_{D}\left(x y z+x p^{2}\right) d x d y
$$

$$
i s
$$

$$
z(x, y)=x^{2} y+c_{1}(y) \ln x+c_{2}(x)
$$

$$
z(x, y)=x^{2} y+c_{1}(x) \ln y+c_{2}(y)
$$

$$
z(x, y)=\frac{x^{2} y}{8}+c_{1}(y) \ln x+c_{2}(y)
$$

none of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$z(x, y)=\frac{x^{2} y}{8}+c_{1}(y) \ln x+c_{2}(y)$
9)

Assuming the second ordere partial derivatives of $z(x, y)$ continuous, the Euler - Ostrogradski equation for the : $I[z(x, y)]=\iint_{D} \sqrt{1+z_{x}^{2}+z_{y}^{2}} d x d y$
$i s$

$$
\begin{aligned}
& z_{x x}\left(1+z_{y}^{2}\right)+2 z_{x} z_{y} z_{x y}-z_{y y}\left(1+z_{x}^{2}\right)=0 \\
& z_{x x}\left(1+z_{y}^{2}\right)-2 z_{x} z_{y} z_{x y}+z_{y y}\left(1+z_{x}^{2}\right)=0 \\
& z_{x x}\left(1+z_{x}^{2}\right)-2 z_{x} z_{y} z_{x y}-z_{y y}\left(1+z_{y}^{2}\right)=0
\end{aligned}
$$

none of these.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$z_{x x}\left(1+z_{y}^{2}\right)-2 z_{x} z_{y} z_{x y}+z_{y y}\left(1+z_{x}^{2}\right)=0$
10) The variational derivative $\frac{\delta J}{\delta y}$ of the functional $J[y(x)]=y(1)$, defined on $\mathcal{C}^{\prime}[0,1], \quad 1$ point is given by
$\delta(x-1)$
$\delta(x+1)$
0
$\delta(x)$
can not be defined.
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\delta(x-1)$

