## Courses » Integral Equations,calculus of variations and its applications

Announcements Course Ask a Question Progress Mentor FAQ

## Unit 10 - Week 9

| Course |
| :--- |
| Outline |
| How to access the <br> portal |
| Week-1 |
| Week 2 |
| Week 3 |
| Week 4 |
| Week 5 |
| Week 6 |
| Week 7 |
| Week 8 |
| Week 9 |
| Calculus of |
| variations: Basic |
| concepts-II |
| Calculus of |
| variations: Basic |
| concepts and |
| Euler's equation |
| Euler's equation: |
| Assignment 9 |
| Some particular |
| cases |
| Euler's equation-I |
| Euler's equation : |
| and Georticular case |
| Brachistochrone |

## Assignment 9

The due date for submitting this assignment has passed. Due on 2018-10-03, 23:59 IST. As per our records you have not submitted this assignment.
1)

1 point
The extremal of the functional $\int_{0}^{\frac{\pi}{4}}\left(\dot{x} \dot{y}+2 x^{2}+2 y^{2}\right) d t$ subject to the conditions $x(0)=y(0)=0, x\left(\frac{\pi}{4}\right)=y\left(\frac{\pi}{4}\right)=1 i s$
$x=y=\sin t$
$x=\sin t, y=1-\cos t$
$x=\sin ^{2} t, y=1-\cos 3 t$
$x=y=\operatorname{cosech}\left(\frac{\pi}{2}\right) \sinh 2 t$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$x=y=\operatorname{cosech}\left(\frac{\pi}{2}\right) \sinh 2 t$
2) The extremal of the functional $\int_{0}^{1}\left(y^{2}+z^{\prime 2}\right) d t$ that satisfy the boundary 1 point conditions $y(0)=z(0)=0, y(1)=1, z(1)=2$, is
$y=x^{2}, z=2 x$
$y=x, z=2 x$
$y=\sin \left(\frac{\pi x}{2}\right), z=2\left(1-\cos \frac{\pi x}{2}\right)$
$y=x, z=2 x^{2}$
No, the answer is incorrect.
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning

$$
\begin{aligned}
& \alpha=0 \text { and } \gamma \neq 0 \\
& \alpha=0 \text { and } \gamma=0 \\
& \beta=0 \text { and } \gamma=0 \\
& \beta=0 \text { and } \delta=0
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\alpha=0$ and $\gamma=0$
4)

1 point
Consider the functional $I[y(x)]=\int_{0}^{1}\left(12 x y+y^{\prime 2}\right) d x$ with $y(0)=0$ and $y(1)=0$.
Then
it has no solution
it has a unique solution given by $y(x)=x^{2}(x-1)$
it has infinitely many solutions
it has a unique solution given by $y(x)=x\left(x^{2}-1\right)$
No, the answer is incorrect.
Score: 0
Accepted Answers:
it has a unique solution given by $y(x)=x\left(x^{2}-1\right)$
5)

1 point
Consider the functional $I[y(x)]=\int_{0}^{1} x y y^{\prime} d x$ with $y(0)=0$ and $y(1)=1$, then
it has only one extremal $y(x)=x(x-1)$
it has no extremal
every differentiable function satisfying the boundary conditions is an extremal
it has only one extremal given by $y(x)=x\left(x^{2}-1\right)$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
it has no extremal
6)

1 point
Consider the functional $I[y(x)]=\int_{0}^{\pi}\left[y^{2}-y^{2}+4 y \cos x\right] d x ; y(0)=0, y(\pi)=0$. Then it ,
no extremal
only two extremals
infinitely many extremals
a unique extremal given by $y(x)=x \sin x$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
infinitely many extremals
${ }^{7)}$ Consider the functional $I[y(x)]=\int_{a}^{b}\left(y+x y^{\prime}\right) d x$. Then
1 point
it has only one extremal
it has exactly two extremals
every differentiable function satisfying the boundary conditions is an extremal cur

None of these
No, the answer is incorrect.
Score: 0
Accepted Answers:
every differentiable function satisfying the boundary conditions is an extremal curv.
8) Consider the functionals $I[y(x)]=\int_{0}^{1}\left(2 e^{y}-y^{2}\right) d x ; y(0)=1, y(1)=e$ and 1 point $J[y(x)]=\int_{0}^{\frac{\pi}{2}} y(2 x-y) d x ; y(0)=0, y\left(\frac{\pi}{2}\right)=\pi$. Then

Both I and J has no extremal

I has a unique extremal but J has no extremal
$J$ has a unique extremal but I has no extremal

Both I and J has unique extremal.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Both I and J has no extremal
9)

1 point
Consider the functional $I[y(x)]=\int_{0}^{1}\left(x-y^{\prime}\right)^{2} d x$. Then the curve for which the functior can be extremized is given by

$$
\begin{aligned}
& y(x)=\frac{x}{2}+x^{2} \\
& y(x)=\frac{x^{2}}{2}+x \\
& y(x)=\frac{x-2 x^{2}}{2} \\
& y(x)=\frac{2 x-x^{2}}{2}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
y(x)=\frac{x^{2}}{2}+x
$$

10) 

Curve for which the functional $I[y(x)]=\int_{a}^{b} \frac{1}{y} \sqrt{1+y^{\prime 2}} d x$ can be extremized is given by

$$
\begin{aligned}
& (x-h)^{2}+y^{2}=k^{2} \\
& x^{2}+(y-k)^{2}=1 \\
& (x-h)^{2}+(y-k)^{2}=1 \\
& h x^{2}+k y^{2}=1
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$(x-h)^{2}+y^{2}=k^{2}$

