Courses » Integral Equations, calculus of variations and its applications			
Jnit 10 - We	Announcements Course Ask a Question Progress Mentor F	ĀQ	
Course outline	Assignment 9		
How to access the portal	The due date for submitting this assignment has passed. Due on 2018-10-03, 23:59 As per our records you have not submitted this assignment.) IST	
Week-1	1) The extremal of the functional $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\dot{x}\dot{u} + 2x^2 + 2u^2) dt$ subject to the condition	1 poi	
Week 2	$f_{0}^{(xy+2x+2y)}$ at subject to the condition $\int_{0}^{(xy+2x+2y)} dx subject to the condition x(0) = y(0) = 0, x(\frac{\pi}{4}) = y(\frac{\pi}{4}) = 1 is$.3	
Week 3			
Week 4	$x = y = \sin t$		
Week 5	$x=\sin t,\ y=1-\cos t$		
Week 6	\sim		
Week 7	$x = \sin^2 t, \ y = 1 - \cos 3t$		
Week 8	$x=y=cosech(rac{\pi}{2})\sinh 2t$		
Week 9	No, the answer is incorrect. Score: 0		
 Calculus of variations: Basic concepts-II 	Accepted Answers: $x=y=cosech(rac{\pi}{2})\sinh 2t$		
Calculus of variations: Basic concepts and Euler's equation	²⁾ The extremal of the functional $\int_0^1 (y'^2 + z'^2) dt$ that satisfy the boundary conditions $y(0) = z(0) = 0$, $y(1) = 1$, $z(1) = 2$, is	1 poi	
 Euler's equation: Some particular cases 	$y=x^2,\ z=2x$		
Euler's equation : A particular case and Geodesics	y = x, z = 2x		
Brachistochrone problem and Euler's equation-I	$y=sin\left(rac{\pi x}{2} ight), \ z=2\left(1-\cos rac{\pi x}{2} ight)$		
Quiz : Assignment 9	$y=x,\;z=2x^2$		

Powered by

Integral Equations, calculus of variations and its...

```
Week 12
                    Deve
                             \alpha = 0 \ and \ \gamma \neq 0
WEEKIY
                             FEEDBACK
                            lpha=0 ~and ~\gamma=0
DOWNLOAD
                             VIDEOS
                             \beta = 0 \ and \ \gamma = 0
                             \beta = 0 \ and \ \delta = 0
                           No, the answer is incorrect.
                           Score: 0
                           Accepted Answers:
                           \alpha = 0 and \gamma = 0
                          4)
                                                                                                                 1 point
                        Consider the functional I[y(x)] = \int_0^1 (12xy + y'^2) dx with y(0) = 0 and y(1) = 0.
                         Then
                             it has no solution
                             it has a unique solution given by y(x) = x^2(x-1)
                             it has infinitely many solutions
                            it has a unique solution given by y(x) = x(x^2 - 1)
                           No, the answer is incorrect.
                           Score: 0
                           Accepted Answers:
                           it has a unique solution given by y(x) = x(x^2 - 1)
                          5)
                                                                                                                  1 point
                        Consider the functional I[y(x)] = \int_0^1 xyy' dx with y(0) = 0 and y(1) = 1, then
                             \bigcirc
                            it has only one extremal y(x) = x(x-1)
                             \bigcirc
                            it\ has\ no\ extremal
                             every differentiable function satisfying the boundary conditions is an extremal
                             \bigcirc
                            it has only one extremal given by y(x) = x(x^2 - 1).
                           No, the answer is incorrect.
                           Score: 0
                           Accepted Answers:
                           it has no extremal
                                                                                                                  1 point
                          6)
                        Consider the functional I[y(x)]=\int_0^\pi [y'^2-y^2+4y\cos x]dx;\ y(0)=0,\ y(\pi)=0. Then it is
                             \bigcirc
                            no\ extremal
                             only \, two \, extremals
                            infinitely\ many\ extremals
```

Integral Equations, calculus of variations and its...

 \bigcirc a unique extremal given by $y(x) = x \sin x$. No, the answer is incorrect. Score: 0 **Accepted Answers:** infinitely many extremals ⁷⁾ Consider the functional $I[y(x)] = \int_a^b (y + xy') dx$. Then 1 point \bigcirc $it\ has\ only\ one\ extremal$ \bigcirc it has exactly two extremals every differentiable function satisfying the boundary conditions is an extremal cur None of these No, the answer is incorrect. Score: 0 **Accepted Answers:** every differentiable function satisfying the boundary conditions is an extremal curv ⁸⁾ Consider the functionals $I[y(x)] = \int_0^1 (2e^y - y^2) dx$; y(0) = 1, y(1) = e and ¹ point $J[y(x)] = \int_{0}^{rac{\pi}{2}} y(2x-y) dx; \ y(0) = 0, \ yigg(rac{\pi}{2} igg) = \pi.$ Then \bigcirc Both I and J has no extremal I has a unique extremal but J has no extremal J has a unique extremal but I has no extremal Both I and J has unique extremal. No, the answer is incorrect. Score: 0 **Accepted Answers:** Both I and J has no extremal 9) 1 point Consider the functional $I[y(x)] = \int_0^1 (x-y')^2 dx$. Then the curve for which the function can be extremized is given by $y(x) = rac{x}{2} + x^2$ $y(x)=rac{x^2}{2}+x$ \bigcirc $y(x)=rac{x-2x^2}{2}$ $y(x) = rac{2x-x^2}{2}$ No, the answer is incorrect. Score: 0 Accepted Answers:

Integral Equations, calculus of variations and its...

$$y(x) = \frac{x^2}{2} + x$$
10)
1 point
Curve for which the functional $I[y(x)] = \int_a^b \frac{1}{y} \sqrt{1 + y'^2} dx$ can be extremized is given by
$$(x - h)^2 + y^2 = k^2$$

$$x^2 + (y - k)^2 = 1$$

$$(x - h)^2 + (y - k)^2 = 1$$

$$hx^2 + ky^2 = 1$$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$$(x - h)^2 + y^2 = k^2$$

Previous Page

End