Course outline

course work?

Week 0

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

spaces

theorem

integration

integration

12

Real Analysis II

Download Videos

34.1 Norms and inner-

34.2 Convergence in L2

34.3 The Riesz--Fischer

35.1 Multiple Riemann

35.2 Multiple Lebesgue

Week 12 Feedback Form:

Quiz: Week 12 : Assignment

products on complex vector

How does an NPTEL online

NPTEL » Real Analysis II Announcements About the Course

Ask a Question

Progress

Mentor

3 points

Week 12 : Assignment 12

The due date for submitting this assignment has passed.

Due on 2021-10-20, 23:59 IST.

As per our records you have not submitted this assignment.

1) Let $f_n, f \in L^2(I)$ and assume that $\lim_{n \to \infty} \| f_n - f \| = 0$ (here the norm is the L^2 -norm). Then $\lim_{n\to\infty} \| f_n \| = \| f \|$.

 $f_n \to f$ a.e. on I.

If $f_n \to g$ a.e. on I then f = g a.e.

If $g \in L^2(I)$ then $\int_I f_n g \to \int_I fg$.

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $\lim_{n\to\infty} \| f_n \| = \| f \|.$ If $f_n \to g$ a.e. on I then f = g a.e.

If $g \in L^2(I)$ then $\int_I f_n g \to \int_I fg$.

2) Let I be a n-dimensional compact interval and let $f: I \to R$ be a bounded function.

3 points

2 points

If f is continuous then f is Riemann integrable.

If f is continuous then f is Lebesgue integrable

If $S \subset I$ and $f = \chi S$ (the characteristic function of S) then f is Riemann integrable.

If f is Riemann integrable then f is continuous a.e. on I.

No. the answer is incorrect. Score: 0

Accepted Answers:

If f is continuous then f is Riemann integrable.

If f is continuous then f is Lebesgue integrable

If f is Riemann integrable then f is continuous a.e. on I.

3) Which of the following theorems for the Lebesgue integral in one dimension hold true in higher dimensions also?

The dominated convergence theorem.

The monotone convergence theorem.

Any Riemann integrable function is Lebesgue integrable.

Any Lebesgue integrable function is a limit of step functions.

No, the answer is incorrect.

Score: 0

Accepted Answers:

The dominated convergence theorem.

The monotone convergence theorem.

Any Riemann integrable function is Lebesgue integrable.

Any Lebesgue integrable function is a limit of step functions.