

Course outline How does an NPTEL online course work? Week 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 19.1 Tangent space to a hypersurface 20.1 The definition of a manifold 21.1 Examples and non examples of manifolds 21.2 The tangent space to a manifold Quiz: Week 7: Assignment 7 Week 7 Feedback Form: Real Analysis II Lecture materials Week 8 Week 9

Week 10

Week 11

Week 12

Download Videos

Week 7: Assignment 7

The dimension of the tangent space is same as the dimension of the manifold.

The tangent space of a manifold at different points are all isomorphic.

The due date for submitting this assignment has passed.	D
As per our records you have not submitted this assignment.	Due on 2021-09-15, 23:59 IST
1) Let $M\subset \mathbb{R}^n$ be a d -dimensional manifold. Let $a\in M$.	2 points
We can always find a local parametrisation for M near a whose domain is $\mathbb{R}^{ ext{d}}$.	
O	
We cannot find a local parametrisation for M near a whose domain is \mathbb{R}^d if M is the open unit ball in \mathbb{R}^d .	
We cannot find a local parametrisation for M near a whose domain is \mathbb{R}^d if M is the unit sphere in \mathbb{R}^{d+1} .	
The only manifold for which find a local parametrisation for M near a whose domain is $\mathbb{R}^{ ext{d}}$ is $M=\mathbb{R}^{ ext{d}}$.	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
We can always find a local parametrisation for M near a whose domain is \mathbb{R}^d .	
2) Which of the following sets are manifolds?	2 points
The graph of a continuous function.	
The level set of a smooth function.	
The set obtained by applying an orthogonal transformation (rotation) to a manifold.	
Any smooth curve in \mathbb{R}^n .	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
The set obtained by applying an orthogonal transformation (rotation) to a manifold.	
Which of the following sets are manifolds?	2 points
A cone with vertex at the origin.	
An ellipse in \mathbb{R}^2 .	
A union of two planes in \mathbb{R}^3 .	
A union of two disjoint hyperplanes in \mathbb{R}^n .	
No, the answer is incorrect. Score: 0	
Accepted Answers: An ellipse in \mathbb{R}^2 .	
An ellipse in \mathbb{R}^n . A union of two disjoint hyperplanes in \mathbb{R}^n .	
Which of the following statements are true about the tangent space to a manifold?	2 points
It is a vector subspace.	·
The dimension of the tangent space is same as the dimension of the manifold.	
The tangent space is a vector subspace only at the point 0 (if $0 \in M$) and only at 0 it is true that the dimension dimension of the manifold.	of the tangent space is same as the
The tangent space of a manifold at different points are all isomorphic.	
No, the answer is incorrect. Score: 0	
Accepted Answers: It is a vector subspace.	