

Course outline How does an NPTEL online course work? Week 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 16.1 The Banach fixed point theorem 16.2 Newton's method 17.1 The inverse function theorem 18.1 Diffeomorphismsm and local diffeomorphisms 18.2 The implicit function theorem Quiz: Week 6: Assignment 6 Week 6 Feedback Form: Real Analysis II Lecture materials Week 7 Week 9 Week 10 Week 11

Week 12

Download Videos

Week 6: Assignment 6

The due date for submitting this assignment has passed.

The implicit function theorem.

Newton's method.

As you are and you have not exhaulted this assissment	Due on 2021-09-08, 23:59 IST.
As per our records you have not submitted this assignment.	
Which of the following statements are true?	2 points
Any C^1 -smooth map $f:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ whose derivative map is invertible everywhere is a surjective map.	
Any C^1 -smooth map $f:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ whose derivative map is invertible everywhere is an injective map.	
If $f:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ C^1 -smooth map whose derivative map is invertible everywhere then $n=m$.	
Any C^1 -smooth map $f:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ whose derivative map is invertible everywhere is a local diffeomorphism.	
No, the answer is incorrect. Score: 0	
Accepted Answers: If $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m C^1$ -smooth map whose derivative map is invertible everywhere then $n = m$.	
Any C^1 -smooth map $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ whose derivative map is invertible everywhere is a local diffeomorphism.	
2) Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the map $f(x, y, z) = (x + y, xy, z^2)$.	0 points
	•
The derivative map is not invertible at $(1, 1, 1)$ and therefore by the inverse function the- orem f is not injective in	n any ball centred at (1, 1, 1).
The derivative map is invertible at $(1, 1, 1)$ and therefore by the inverse function theorem f is injective in some be	all centred at (1, 1, 1).
f is not injective in any ball centred at (1, 1, 1).	
If the derivative map of a map $g:U\longrightarrow F$ is not invertible at $a\in U$ then g cannot be injective in any ball centered.	tred at a.
No, the answer is incorrect. Score: 0	
Accepted Answers: f is not injective in any ball centred at (1, 1, 1).	
3) Which of the following sets can be locally expressed as graphs?	2 points
The unit sphere in \mathbb{R}^n .	
The union of the x and y axes in \mathbb{R}^2 .	
The set of zeroes in \mathbb{R}^2 of a polynomial in the two variables x and y .	
The image of C^1 -smooth curve $\gamma:(a,b)\longrightarrow \mathbb{R}^n$.	
No, the answer is incorrect. Score: 0	
Accepted Answers: The unit sphere in \mathbb{R}^n .	
4) Which of the following can be used to give a proof of the inverse function theorem?	2 points
The Banach contraction mapping principle.	
The implicit function theorem.	
Newton's method.	
The fundamental theorem of calculus.	
No, the answer is incorrect. Score: 0	
Accepted Answers: The Banach contraction mapping principle.	