Due on 2021-09-01, 23:59 IST.

0 points

## How does an NPTEL online course work? Week 0 Week 1 Week 2 Week 3 Week 4 10.1 Vector-valued functions 10.2 Scalar-valued functions of a vector variable 10.3 Directional derivatives and the gradient 11.1 Interpretation and properties of the gradient 11.2 Higher-order partial derivatives 12.1 The derivative as a linear 12.2 Examples of differentiation Quiz: Week 4: Assignment 4 Week 4 Feedback Form: Real Analysis II Lecture materials Week 5 Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

**Download Videos** 

## Week 4: Assignment 4

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

Which of the following functions are sublinear on R?

h

 $h^2$ 

log(1 + |h|)

 $e^{-h} - 1$ 

No, the answer is incorrect. Score: 0

Accepted Answers:

log(1 + |h|)

 $e^{-h} - 1$ 

1 point

1 point

 $f(x, y) = \begin{cases} y & x \neq 0 \\ 0 & x = 0 \end{cases}$ 

Then

Consider the function

is differentiable at 0.

f is continuous at 0.

f is continuously differentiable at 0.

The partial derivatives of f exist at 0.

No, the answer is incorrect.

Accepted Answers: f is continuous at 0.

The partial derivatives of f exist at 0.

Let f: R<sup>n</sup> → R be a differentiable at all points in an open ball centred at 0. Which of the following are correct interpretations of the derivative 1 point

The slope of the tangent to the graph of f.

The best linear approximation of f at 0.

Viewing the matrix of the derivative map under the standard basis as a vector, this vector gives the direction of maximum rate of change of f.

The vector in the previous part is normal to the graph of f at (0, f(x)).

No, the answer is incorrect. Score: 0

Accepted Answers: The best linear approximation of f at 0.

Viewing the matrix of the derivative map under the standard basis as a vector, this vector gives the direction of maximum rate of change of f.

4) Let  $U \subset \mathbb{R}^n$  be open and let  $f:U \to \mathbb{R}$  be differentiable and whose derivative map is the 0 linear functional at all points. Then

f is identically 0.

f is identically constant.

f is identically zero if f is continuously differentiable.

Either f is identically constant or U is disconnected. No, the answer is incorrect.

Score: 0

Accepted Answers:

Either f is identically constant or U is disconnected.

5) We will identify the collection of  $n \times n$  matrices as  $\mathbb{R}^{n^2}$  for this problem. Which of the following function defined on the space of matrices are **2 points** 

differentiable (the codomains are not the same in each option)?

The transpose map.

Fix a  $n \times n$  invertible matrix B and consider  $A \mapsto BAB^{-1}$ . The trace of the matrix.

No, the answer is incorrect.

The determinant function.

Accepted Answers:

Score: 0

The determinant function.

The transpose map.

Fix a  $n \times n$  invertible matrix B and consider  $A \mapsto BAB^{-1}$ .

The trace of the matrix.

6) In this problem, we identify the set of complex numbers with R<sup>2</sup> in the obvious way. Let f: C → C be differentiable. Then the derivative map 2 points  $Df(0): \mathbb{R}^2 \to \mathbb{R}^2$  can be viewed as a map  $T: \mathbb{C} \to \mathbb{C}$  under our identification of  $\mathbb{C}$  with  $\mathbb{R}^2$ . Then

T is automatically complex linear.

T is never complex linear unless T is the zero map.

T is complex linear if  $\det T > 0$ .

Let the matrix of Df(0) be

Then T is complex linear if a = d and b = -c.

No, the answer is incorrect. Score: 0

Accepted Answers:

Let the matrix of Df(0) be

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then T is complex linear if a = d and b = -c.