NPTEL » Real Analysis II

Course outline
How does an NPTEL online course work?
Week 0
Week 1
Week 2
Week 3
 7.1 Connectedness
 7.2 Path-Connectedness
 7.3 Connected Components
 8.1 The ArzelaAscolli theorem
 8.2 Upper and lower limits
 9.1 The StoneWeierstrass theorem
 9.2 All norms are equivalent
Lecture materials
Ouiz: Week 3: Assignment 3
 Week 3 Feedback Form: Real Analysis II
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Week 10

Week 11

Week 12

Download Videos

Week 3: Assignment 3	
The due date for submitting this assignment has passed. Due on 2021-08-25, 23	3:59 IST.
As per our records you have not submitted this assignment. 1) Which of the following sets are always connected in any metric space?	1 point
Any connected component.	7 60
Singleton sets.	
Any subset that is closed and open. Finite sets.	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
Any connected component. Singleton sets.	
2) Let X be a compact metric space. Which of the following spaces of continuous functions to the real numbers on X is always equicontinuous?	1 point
Any finite collection of continuous functions.	
Any countable collection of continuous functions.	
The space of all bounded and continuous function.	
Any compact subset of $\mathcal{B}C(X,\mathbb{R}).$	
No, the answer is incorrect. Score: 0 Accepted Answers:	
Any finite collection of continuous functions. Any compact subset of $\mathcal{BC}(X,\mathbb{R})$.	
	4 ! 4
3) Consider the function	1 point
$\int \sin(1/x) \text{ if } x \neq 0,$	
$f(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0, \\ y & \text{if } x = 0. \text{ Here } y \text{ is a real number.} \end{cases}$	
(9 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
For which choices of y is the graph of the function a connected subset of \mathbb{R}^2 ?	
y = 2	
y = 1 $y = 0$	
For no choice of y is the graph of f connected.	
No, the answer is incorrect. Score: 0	
Accepted Answers: y = 1	
y = 0	
4) Which of the following subsets of the space $C([0, 1], \mathbb{R})$ are dense?	1 point
The collection of differentiable functions. The collection of all polynomials with integer coefficents.	
The collection of all polynomials with integer coefficients. The collection of all polynomials with rational coefficients.	
The collection of functions $\operatorname{span}_{\mathbb{R}} \left\{ 1, \sin t, \sin^2 t, \dots \right\}$.	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
The collection of differentiable functions. The collection of all polynomials with rational coefficients.	
The collection of functions $span_{\mathbb{R}} \{1, \sin t, \sin^2 t, \dots\}$.	
5) Consider the sequence sin n. Which of the following statements are true?	1 point
The sequence converges.	
$\lim\sup_{n\to\infty}\sin\ n=1$	
$\lim\sup_{n\to\infty}\sin\ n=0$	
$\lim \inf_{n \to \infty} \sin n = -1$ No, the answer is incorrect.	
Score: 0 Accepted Answers:	
$\lim \sup_{n \to \infty} \sin n = 1$ $\lim \inf_{n \to \infty} \sin n = -1$	
6) Which of the following statements about connectedness and path-connectedness in a metric space are true?	1 point
Any path-connected set is always connected.	rpoint
Any path-connected component is always closed.	
Any connected component is always closed.	
In \mathbb{R}^n , the connected subsets are precisely the path-connected subsets.	
No, the answer is incorrect. Score: 0	
Accepted Answers: Any path-connected set is always connected.	
Any connected component is always closed. In \mathbb{R}^n , the connected subsets are precisely the path-connected subsets.	
7) Let $f: X \to Y$ be a continuous bijective map between metric spaces. We say f is a homeomorphism if f^{-1} is also continuous. The metric spaces X and Y are said to be homeomorphic if we can find a homeomorphism from X onto Y . Which of the following spaces are homeomorphic?	2 points
[Hint : Use connectedness and compactness]	
[0, 1] and $\mathbb R$	
The unit circle in \mathbb{R}^2 and [0, 1]	
The unit circle in \mathbb{R}^2 and (0, 1)	
(0, 1) and \mathbb{R} No, the answer is incorrect.	
Score: 0 Accepted Answers: (0, 1) and R	