NPTEL » Measure Theory Announcements About the Course Ask a Question Progress Mentor

Unit 6 - Week 4

Course outline

course work?

Week 0

Week 1

Week 2

Week 3

Week 4

measure: Inner

measure: Inner

Measure Theory

Lecture notes

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Video Download

Text Transcripts

Live Session

Downwar Monotone

Downwar Monotone

```
Assignment 4
How does an NPTEL online
                                                  The due date for submitting this assignment has passed.
                                                                                                                                                                                          Due on 2020-10-14, 23:59 IST.
                                                  As per our records you have not submitted this assignment.
                                                   Notation:
                                                  We use the following notations. The Lebesgue outer measure of a set E\subseteq\mathbb{R}^d is denoted as m^*(E). If m^*(E)=0, E will be called a Lebesgue null set.
                                                  Int(E) will denote the interior of a set E and \overline{E} will denote its closure. For a set A\subseteq \mathbb{R}^d we denote by \chi_A its characteristic/indicator function.
                                                  1) Which of the following are true for a Lebesgue measurable subset E \subset \mathbb{R}^d ?
                                                                                                                                                                                                                                1 point
 The measure axioms and the
                                                    m^*(E) = \sup\{m^*(U) : U \subseteq E \text{ is open}\}
   Borel-Cantelli Lemma
   Properties of the Lebesgue
                                                     m^*(E) = \sup\{m^*(A) : A \subseteq E \text{ is Jordan measurable}\}
   regularity, Upward and
                                                     m^*(E) = \sup\{m^*(K) : K \subseteq E \text{ is compact}\}
   convergence theorem, and
   Dominated convergence
                                                     m^*(E) = \sup\{m^*(F) : F \subseteq E \text{ is closed}\}
   theorem for sets - Part 1
                                                   No, the answer is incorrect.

    Properties of the Lebesgue

                                                   Score: 0
                                                   Accepted Answers:
   regularity, Upward and
                                                   m^*(E) = \sup\{m^*(K) : K \subseteq E \text{ is compact}\}
                                                   m^*(E) = \sup\{m^*(F) : F \subseteq E \text{ is closed}\}
   convergence theorem, and
   Dominated convergence
                                                  2) Let E,F be bounded, disjoint subsets of \mathbb{R}^d . Which of the following conditions imply that m^*(E\cup F)=m^*(E)+m^*(F)?
                                                                                                                                                                                                                                1 point
   theorem for sets - Part 2
   Lebesgue measurability under
   Linear transformation,
                                                     Either E or F is Lebesgue measurable.
   Construction of Vitali Set -Part
                                                     Both E and F are closed.
   Lebesgue measurability under
   Linear transformation,
                                                    If E and F are separated, i.e. d(E,F)>0, where d(E,F)=\inf\{d(x,y)|x\in E,y\in F\}.
   Construction of Vitali Set - Part
                                                     Both E and F are arbitrary (but still bounded and disjoint) subsets of \mathbb{R}^d.
   Week 4 Feedback Form:
                                                   No, the answer is incorrect.
                                                   Score: 0
   Quiz: Assignment 4
                                                   Accepted Answers:
                                                   Either E or F is Lebesgue measurable.
  Assignment 4 solution
                                                  If E and F are separated, i.e. d(E,F)>0, where d(E,F)=\inf\{d(x,y)|x\in E,y\in F\}.
                                                  3) Which of the following are true for a Lebesgue measurable subset E\subseteq \mathbb{R}^d ?
                                                                                                                                                                                                                                1 point
                                                     E may contain a Lebesgue non-measurable subset.
                                                    If E is a compact subset of \mathbb{R}^d then every subset of E is Lebesgue measurable.
                                                    If E is a box in \mathbb{R}^d , then all its subsets are Lebesgue measurable.
                                                   No, the answer is incorrect.
                                                   Score: 0
                                                   Accepted Answers:
                                                   E may contain a Lebesgue non-measurable subset.
                                                  4) Recall that a countable intersection of open sets is called a G_{\delta} set and a countable union of closed sets is called an F_{\sigma} set. Which of the following implies 1 point
                                               that a subset E\subseteq\mathbb{R}^2 is Lebesgue measurable?
                                                    There exists G_\delta set G\supseteq E satisfying m^*(Gackslash E)=0
                                                    For every \epsilon>0 there is a closed set K\subseteq E such that m^*(Eackslash K)<\epsilon
                                                    There exists a G_\delta set G and a F_\sigma set F such that F\subseteq E\subseteq G such that m^*(Gackslash F)=0
                                                   No, the answer is incorrect.
                                                   Score: 0
                                                   Accepted Answers:
                                                   There exists G_\delta set G\supseteq E satisfying m^*(Gackslash E)=0
                                                   For every \epsilon>0 there is a closed set K\subseteq E such that m^*(Eackslash K)<\epsilon
                                                   There exists a G_\delta set G and a F_\sigma set F such that F\subseteq E\subseteq G such that m^*(Gackslash F)=0
                                                  5) There exists a nowhere dense Lebesgue measurable subset of [0, 1] of positive Lebesgue measure. Recall that A \subset \mathbb{R}^d is called nowhere dense if Int 1 point
                                                (\bar{A}) = \phi.
                                                (Hint: Consider generalized Cantor sets)
                                                    ○ True

    False

                                                   No, the answer is incorrect.
                                                   Score: 0
                                                   Accepted Answers:
                                                   True
                                                  6) Choose correct statements from the following:
                                                                                                                                                                                                                                 1 point
                                                    There exists a Lebesgue non measurable subset of {\mathbb R} of infinite Lebesgue outer measure.
                                                     Given \epsilon>0, there exists a bounded Lebesgue non-measurable subset of \mathbb R of Lebesgue outer measure <\epsilon
                                                     Given M>0, there exists a Lebesgue non-measurable subset of \mathbb R of Lebesgue outer measure >M
                                                    Given M>0, there exists a Lebesgue non-measurable subset of \mathbb R of Lebesgue outer measure = M . [ Hint: For any A\subseteq\mathbb R^d, of finite Lebesgue outer measure,
                                                    for \lambda>0 compute the Lebesgue outer measure of the set \lambda A:=\{\lambda x:x\in A\}.]
                                                   No, the answer is incorrect.
                                                   Score: 0
                                                   Accepted Answers:
                                                   There exists a Lebesgue non measurable subset of \mathbb{R} of infinite Lebesgue outer measure.
                                                   Given \epsilon>0, there exists a bounded Lebesgue non-measurable subset of \mathbb R of Lebesgue outer measure
                                                  Given M>0, there exists a Lebesgue non-measurable subset of \mathbb R of Lebesgue outer measure >M
                                                  Given M>0, there exists a Lebesgue non-measurable subset of \mathbb R of Lebesgue outer measure = M . [
                                                  Hint: For any A\subseteq \mathbb{R}^d , of finite Lebesgue outer measure, for \lambda>0 compute the Lebesgue outer measure
                                                  of the set \lambda A := \{\lambda x : x \in A\}.
                                                  7) Let E \subseteq \mathbb{R}. Then there exists a Lebesgue measurable subset G such that m(G) = m^*(E)
                                                                                                                                                                                                                               0 points
                                                    True
                                                     False
                                                  No, the answer is incorrect. Score: 0
                                                   Accepted Answers:
                                                   True
                                                  8) Which of the following is true for a Vitali set V \subset [0,1]?
                                                                                                                                                                                                                                 1 point
                                                     There exists a rational q \in \mathbb{Q} such that V + q is Lebesgue measurable.
                                                    m^*(V)+m^*([0,1]\setminus V)=1
                                                    [0, 1]\V is Lebesgue non-measurable.
                                                   No, the answer is incorrect.
                                                   Score: 0
                                                   Accepted Answers:
                                                   [0,1]\backslash V is Lebesgue non-measurable.
                                                  9) Let A\subseteq\mathbb{R} . Then A	imes\{0\} is Lebesgue measurable in \mathbb{R}^2
                                                                                                                                                                                                                               0 points
                                                    True

    False

                                                   No, the answer is incorrect.
                                                   Score: 0
                                                   Accepted Answers:
                                                  10) Let \{E_n\}_{n\geq 1} be a sequence of Lebesgue measurable subsets of \mathbb{R}^d and let E=\bigcup_{n=1}^\infty E_n. Which of the following are true?
                                                                                                                                                                                                                                1 point
                                                    m(E) = \lim_{n \to \infty} m(\bigcup_{i=1}^{n} E_i)
                                                    If m(E) < \infty then m(\limsup E_n) = \limsup \ m(\bigcup_{k=n}^\infty E_k)
                                                    m(\liminf_{n 	o \infty} E_n) = \liminf_{n 	o \infty} m(\bigcap_{k=n}^\infty E_k)
                                                    m(\liminf_{n\to\infty}E_n)=\liminf_{n\to\infty}m(E_n)
                                                   No, the answer is incorrect.
                                                   Score: 0
                                                   Accepted Answers:
                                                   m(E) = \lim_{n 	o \infty} m(\bigcup E_i)
                                                             n\rightarrow\infty
                                                  If m(E) < \infty then m(\limsup_{n \to \infty} E_n) = \limsup_{n \to \infty} \ m(\bigcup_{k=n}^\infty E_k)
                                                  m(\liminf_{n \to \infty} E_n) = \liminf_{n \to \infty} m(\bigcap_{k=n}^\infty E_k)
                                                  11) Let \{E_n\}_{n\geq 1} be a sequence of Lebesgue measurable subsets of a Euclidean ball B (of radius 1) in \mathbb{R}^d and suppose that there exists a set E such that 1 point
                                                \chi_{E_n} 	o \chi_E pointwise as n 	o \infty. Which of the following are true?
                                                    m^*(E) = \lim_{n \to \infty} m(E_n).
                                                    E is Lebesgue measurable.
                                                    There exists a point x_0 \in \mathbb{R}^d such that \lim_{n \to \infty} \chi_{E_n}(x_0) 
eq \chi_E(x_0) .
                                                    E=\limsup_{n\to\infty}E_n
                                                   No, the answer is incorrect.
                                                   Score: 0
                                                   Accepted Answers:
                                                  m^*(E) = \lim_{n \to \infty} m(E_n).
                                                   E is Lebesgue measurable.
                                                  E=\lim \, {\mathfrak s}{\mathfrak u}{\mathfrak p}_{n	o\infty}E_n
                                                  12) Consider for d \geq 1, d distinct sequences of positive real numbers \{a_{n,i}\}_{n \in \mathbb{N}}, 1 \leq i \leq d such that \sum_{n=1}^{\infty} a_{n,i} < \infty for each i, Consider the box
                                                                                                                                                                                                                                1 point
                                                A_n = [0, (a_{n,1})^{1/d}] \times [0, (a_{n,2})^{1/d}] \times \cdots \times [0, (a_{n,d})^{1/d}] \subset \mathbb{R}^d. \text{ Then } m(\limsup_{n \to \infty} A_n) = \underline{\qquad}. \text{(Hint: Use the A.M.-G.M. inequality)}
                                                     \infty
                                                    \prod_{i=1}^d (\sum_{n=1}^\infty a_{n,i})^{1/d}
                                                   No, the answer is incorrect.
                                                   Accepted Answers:
                                                  13) Which of the following options imply that a Lebesgue measurable set E \subset \mathbb{R}^d has finite measure?
                                                                                                                                                                                                                               0 points
                                                     There exists a compact set F such that m(E \Delta F) < \infty
                                                    E=igcap_{n\geq 1}E_n where \{E_n\} is a sequence of Lebesgue measurable sets such that m(E_n)<\infty for some n\in\mathbb{N}.
                                                    E=igcup_{n\geq 1}E_n where \{E_n\} is a sequence of Lebesgue measurable sets such that m(E_n)\leq a_n for some sequence \{a_n\} such that \lim_{n\to\infty}a_n=0.
                                                    E = \bigcup_{n \geq 1} E_n where \{E_n\} is a sequence of Lebesgue measurable sets such that m(E_n) < a_n for some sequence \{a_n\} such that \Sigma a_n < \infty.
                                                  No, the answer is incorrect. Score: 0
                                                   Accepted Answers:
                                                  There exists a compact set F such that m(E\,\Delta\,F)<\infty
                                                   E=igcap_{n\geq 1}E_n where \{E_n\} is a sequence of Lebesgue measurable sets such that m(E_n)<\infty for
                                                   E = igcup_{n \geq 1} E_n where \{E_n\} is a sequence of Lebesgue measurable sets such that m(E_n) < a_n for
                                                  some sequence \{a_n\} such that \Sigma a_n < \infty.
                                                  14) Let E\subset \mathbb{R}^d be Lebesgue measurable. Then m(Int(E))=m(E)=m(\overline{E}).
                                                                                                                                                                                                                               0 points
                                                    True

    False

                                                   No, the answer is incorrect.
                                                   Accepted Answers:
                                                   False
                                                  15) If E\subset\mathbb{R} is Lebesgue measurable, then its boundary \partial E is Lebesgue measurable and m(\partial E)=0
                                                                                                                                                                                                                               0 points
                                                   ○ True
                                                     False
                                                   No, the answer is incorrect.
                                                   Accepted Answers:
                                                   False
                                                   16) Let f: \mathbb{R} \to \mathbb{R} be continuous. Then which of the following is true?
                                                                                                                                                                                                                               0 points
                                                    G_f = \{(x,f(x)): x \in \mathbb{R}\} is Lebesgue measurable in \mathbb{R}^2 and m(G_f) = 0
                                                    A_f \mathrel{\mathop:}= \{(x,y) : 0 < y < f(x)\} is Lebesgue measurable
                                                    If E \subset \mathbb{R} has finite Lebesgue outer measure, then f(E) also has finite Lebesgue outer measure.
                                                    If f is a homeomorphism then option (c) is true.
                                                   No, the answer is incorrect.
                                                   Score: 0
                                                  G_f = \{(x,f(x)): x \in \mathbb{R}\} is Lebesgue measurable in \mathbb{R}^2 and m(G_f) = 0
                                                  A_f := \{(x,y) : 0 < y < f(x)\} is Lebesgue measurable
                                                  17) Let C be the middle-third Cantor set. It can be proven that there exists a continuous surjection g:[0,1] \to [0,1] whose restriction to C is also
                                                                                                                                                                                                                               0 points
                                                surjective.. Based on this fact, conclude which of the following statements are true.
                                                    If E \subset \mathbb{R} is a Lebesgue null set and f: E \to \mathbb{R} is continuous (E having subspace topology from \mathbb{R}), then f(D) need not be a Lebesgue null set for each
                                                    D \subset E.
```

If $E \subset \mathbb{R}$ is a Lebesgue null set and $f: E \to \mathbb{R}$ is continuous (E having subspace topology from \mathbb{R}), f(E) always has finite Lebesgue outer measure.

Let $E,F\subset\mathbb{R}$, if f:E o F is uniformly continuous, then f preserves Lebesgue outer measure.

If $E\subset \mathbb{R}$ is a Lebesgue null set and $f:E o \mathbb{R}$ is continuous (E having subspace topology from \mathbb{R}), then

No, the answer is incorrect.

f(D) need not be a Lebesgue null set for each $D \subset E$.

Accepted Answers:

Score: 0