NPTEL » Measure Theory Announcements About the Course Ask a Question Progress Mentor Unit 2 - Week 0 Course outline Assignment 0 How does an NPTEL online Due on 2020-09-21, 23:59 IST. The due date for submitting this assignment has passed. course work? As per our records you have not submitted this assignment. Week 0 Note: This assignment is only for practice purpose and it will not be counted towards the Final score Quiz : Assignment 0 Solution : Assignment 0 1) Let $ig\{a_nig\}_{n\in\mathbb{N}}$ be a recursively defined sequence, such that $a_n=\sqrt{2a_{n-1}}$,and given $0< a_1<\sqrt{2}$: 1 point Week 1 Week 2 a_n is a monotonic and bounded sequence Week 3 a_n converges to 0 Week 4 a_n converges to 2 Week 5 a_n is bounded but not monotonic Week 6 No, the answer is incorrect. Score: 0 Accepted Answers: Week 7 a_n is a monotonic and bounded sequence a_n converges to 2 Week 8 2) Let $\left\{a_n
ight\}_{n\in\mathbb{N}}$ be a recursively defined sequence, such that 1 point Week 9 $a_n = \frac{3 + a_{n-1}}{1 + a_{n-1}}$ Week 10 Week 11 and given $a_1>\sqrt{3}$: Week 12 $ig\{a_nig\}$ is a monotonic and bounded sequence Video Download $\lim_{n o \infty} \sup \left(a_n
ight)$ is $\sqrt{3}$ Text Transcripts $\left\{a_n
ight\}$ converges to $\sqrt{3}$ Live Session $\{a_n\}$ is bounded but not monotonic No, the answer is incorrect. Accepted Answers: $\lim_{n\to\infty}\sup\left(a_n\right)$ is $\sqrt{3}$ $\left\{a_n
ight\}$ converges to $\sqrt{3}$ $\{a_n\}$ is bounded but not monotonic 3) State which of the following statements are True? 1 point \exists a continuous function $f:\mathbb{R} \to \mathbb{R}$ with exactly n points of continuity \exists a monotonic function $f:\mathbb{R} o \mathbb{R}$ with uncountably many discontinuities A sequence $(a_n)\subseteq \mathbb{R}$ is convergent if and only if $\lim_{n o\infty}\sup(a_n)=\lim_{n o\infty}\inf(a_n)$ No, the answer is incorrect. Score: 0 Accepted Answers: \exists a continuous function $f:\mathbb{R} o \mathbb{R}$ with exactly n points of continuity A sequence $(a_n)\subseteq \mathbb{R}$ is convergent if and only if $\lim_{n o\infty} \sup(a_n)=\lim_{n o\infty}\inf\left(a_n
ight)$ 4) Which of the following are true? 1 point $\sum_{n=1}^{n=\infty} \frac{3^{1-2n}}{n^2+1} \text{ converges}$ No, the answer is incorrect. Score: 0 Accepted Answers: $\sum_{n=1}^{n=\infty} rac{3^{1-2n}}{n^2+1}$ converges 5) Suppose a,b>0 . The value of $\lim_{x \to 0} (ln(1-e^{-ax})) - (ln(1-e^{-bx}))$ = ______ 1 point \bigcirc 0 The limit does not exist. $\ln(b/a)$ $\ln(a/b)$ No, the answer is incorrect. Score: 0 Accepted Answers: In (a/b)6) Determine which of the following choices are true: 1 point There exists a homeomorphism between (0, 1) and [0, 1]. There exists no continuous bijection from [0, 1] onto (0, 1) Every continuous real-valued function on a compact subset of $\mathbb R$ is uniformly continuous If f:[0,1]
ightarrow [0,1] is a continuous bijection then f is a homeomorphism. No, the answer is incorrect. Score: 0 Accepted Answers: There exists no continuous bijection from [0, 1] onto (0, 1) Every continuous real-valued function on a compact subset of $\mathbb R$ is uniformly continuous If f:[0,1] o [0,1] is a continuous bijection then f is a homeomorphism. 7) Determine which of the following statements are true: 1 point f:[a,b]
ightarrow [a,b] is a continuous function, then f has a fixed point. Let $F\subseteq\mathbb{R}$ be a closed subset. Define for $x\in\mathbb{R}, d(x,F):=inf_{y\in F}|x-y|$, then the function g(x):=d(x,F) is a continuous function on \mathbb{R} . A continuous function defined on a compact set $A\subseteq\mathbb{R}$ has a maxima and minima and attains them on A. if K,F are respectively compact and closed disjoint subsets of $\mathbb R$ then $d(K,F):=inf_{y\in K}d(x,F)$ is strictly positive. No, the answer is incorrect. Score: 0 Accepted Answers: f:[a,b] o [a,b] is a continuous function, then f has a fixed point. Let $F\subseteq \mathbb{R}$ be a closed subset. Define for $x\in \mathbb{R}, d(x,F):=inf_{y\in F}|x-y|$, then the function g(x) := d(x,F) is a continuous function on $\mathbb R$. A continuous function defined on a compact set $A\subseteq\mathbb{R}$ has a maxima and minima and attains them on A. if K,F are respectively compact and closed disjoint subsets of $\mathbb R$ then $d(K,F):=inf_{y\in K}d(x,F)$ is strictly positive. 8) Determine which of the following statements are true, regarding the uniform and pointwise convergence of the given sequence of functions 1 point $f_n: \mathbb{R} o \mathbb{R}, n \geq 1$ given by $f_n(x) = x^n$? $f_n(x)$ converges uniformly on (0, 1) $f_n(x)$ converge uniformly on [0, 1] $f_n(x)$ converges pointwise on [0, 1] $f_n(x)$ converges uniformly on (0, lpha) , orall lpha < 1No, the answer is incorrect. Score: 0 Accepted Answers: $f_n(x)$ converges pointwise on [0, 1] $f_n(x)$ converges uniformly on (0,lpha) , orall lpha < 11 point Given $\sum_{n=1}^\infty |a_n| < \infty$ then $\sum_{n=1}^\infty a_n \sin nx$ converges uniformly as a series on all of $\mathbb R$ True False No, the answer is incorrect. Score: 0 Accepted Answers: Consider a function $f:\mathbb{R} o\mathbb{R}$. Determine which of the following are true, given $f_n(x)=f(x+rac{1}{n}), n\geq 1$: 1 point If f(x) is continuous on $\mathbb{R},$ $f_n(x)$ converges to f(x) uniformly on all of \mathbb{R} If f is continuous on \mathbb{R} , $f_n(x)$ converges pointwise to f(x) on all of \mathbb{R} If f is uniformly continuous on $\mathbb{R}, f_n(x)$ converges uniformly to f(x) on all of \mathbb{R} If f is continuous on $\mathbb R$, then on any given compact subset of $\mathbb R$, $f_n(x)$ converges to f uniformly. No, the answer is incorrect. Score: 0 Accepted Answers: If f is continuous on \mathbb{R} , $f_n(x)$ converges pointwise to f(x) on all of \mathbb{R} If f is uniformly continuous on \mathbb{R} , $f_n(x)$ converges uniformly to f(x) on all of \mathbb{R} If f is continuous on \mathbb{R} , then on any given compact subset of \mathbb{R} , $f_n(x)$ converges to f uniformly. 11) $F:[-1,1] o\mathbb{R}, F(x)=\int_{-1}^x|t|dt$ is a $\operatorname{\mathcal{C}}^2$ function. 1 point True False No, the answer is incorrect. Score: 0 Accepted Answers: False 12) Suppose f_n , f are real valued functions on [0, 1] such that $\{f_n\}$ converges to f pointwise. If each f_n is Riemann integrable, which of the following statements are true? f must be Riemann integrable, and limit and integral can be exchanged i.e. $\int_0^1 f dx = \lim_{n o \infty} \int_0^1 f_n dx$. If the convergence of f_n to f is uniform, then f is Riemann integrable and limit and integral can be exchanged. f may be Riemann integrable, but it need not be true that $\int_0^1 f dx = \lim_{n o \infty} \int_0^1 f_n dx$. No, the answer is incorrect. Score: 0 Accepted Answers: If the convergence of f_n to f is uniform, then f is Riemann integrable and limit and integral can be f may be Riemann integrable, but it need not be true that $\int_0^1 f dx = \lim_{n o \infty} \int_0^1 f_n dx$. 13) Consider a sequence of differentiable functions $f_n:[a,b] o\mathbb{R}$ such that f'_n is continuous for each $n\geq 1$, and f_n converges pointwise to a 1 point differentiable function f . Which of the following options implies $f' = \lim_{n o \infty} f'_n$? Convergence is uniform ie, $\{f_n\}$ converges uniformly to f $\{f_n'\}$ converges uniformly to some function g. f' is continuous. No, the answer is incorrect. Score: 0 Accepted Answers: $\{f_n'\}$ converges uniformly to some function g. 14) Which of the following real-valued functions on [0, 1] is not necessarily Riemann integrable? 1 point a differentiable function a monotone function a characteristic function of a countable set No, the answer is incorrect. Score: 0 Accepted Answers: a characteristic function of a countable set For a continuous function $f:[0,1]\to\mathbb{C}$, the quantity $\lim_{x\to 0+}\frac{1}{x}\int_0^x f(t)dt$: 1 point Need not exist always. Exists only if f is differentiable on [0, 1] and equals f'(0). Always exists and equals f(0). No, the answer is incorrect. Score: 0 Accepted Answers: Always exists and equals f(0). 16) Given an open subset U of \mathbb{R}^n , there exists another open subset $V \subset U$ such that $\overline{V} \subseteq U$ and \overline{V} is compact. 1 point ○ True false No, the answer is incorrect. Score: 0 Accepted Answers: True 17) Determine whether the following statement is true or false: There exists a countably infinite connected subset of $\mathbb R$. 1 point True False No, the answer is incorrect. Score: 0 Accepted Answers: False 18) Determine whether the following statement is true or false: 1 point There does not exist a continuous function $f:\mathbb{R} o [0,1]$ such that $f\equiv 1$ on [-0.99, 0.99] but $f\equiv 0$ outside [-1, 1]. True False No, the answer is incorrect. Score: 0 Accepted Answers: False 19) Which of the following statements is/ are true? 1 point Every continuous function $f: \mathbb{R} \to \mathbb{R}$ maps Cauchy sequences to Cauchy sequences. A function $f:\mathbb{R} \to \mathbb{R}$ which maps Cauchy sequences to Cauchy sequences must be continuous. If $f:[a,b] o \mathbb{R}$ is differentiable, f' has intermediate value property. No, the answer is incorrect. Score: 0 Accepted Answers: Every continuous function $f:\mathbb{R} \to \mathbb{R}$ maps Cauchy sequences to Cauchy sequences. If $f:[a,b] o \mathbb{R}$ is differentiable, f' has intermediate value property. 20) Which of the following statements about the middle-thirds Cantor set is true? 1 point It is nowhere dense. It is uncountable. It is countable. No, the answer is incorrect. Score: 0 Accepted Answers: It is nowhere dense. It is uncountable. The value of $\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{n^2}$ is: 1 point 1/201 The limit does not exist. No, the answer is incorrect. Score: 0 Accepted Answers: 1/222) Choose the correct statement(s) about a sequence of real numbers $\{x_n\}$ from the following: 1 point If every subsequence of $\{x_n\}$ converges to a real number a then the original sequence itself converges to a. If $\{x_n\}$ has a convergent subsequence, then $\{x_n\}$ converges. There are bounded sequences $\{x_n\}$ which do not have any convergent subsequences. No, the answer is incorrect. Score: 0 Accepted Answers: If every subsequence of $\{x_n\}$ converges to a real number a then the original sequence itself converges 23) Which of the following statement(s) is true? 1 point $\sum_{n=1}^{\infty} rac{sin \, n}{n^2}$ is absolutely convergent. $\sum_{n=1}^{\infty} \frac{n!}{3^n}$ is divergent. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ \text{converges}.$ No, the answer is incorrect. Score: 0 Accepted Answers: $\sum_{n=1}^{\infty} rac{\sin n}{n^2}$ is absolutely convergent. Radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{5^n \times x^n}{(n+1)}$ is _____ No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 0.1,0.3 1 point 25) Every rearrangement of an absolutely convergent series gives the same sum. 1 point True False No, the answer is incorrect. Score: 0 Accepted Answers: True