

Groups : Motion, symmetry and puzzles - - Unit 6...

Assignment 4	trace of M is negative.
VIDEO DOWNLOAD	$^{ce De}$ M^2 is identity matrix.
	determinant of M is positive.
	4) What is/are the correct statement(s) about SO(3)? 2 points
	It has finitely many finite subgroups.
	It has infinitely many finite subgroups.
	It has finitely many infinite subgroups.
	It has infinitely many infinite subgroups.
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	It has infinitely many finite subgroups. It has infinitely many infinite subgroups.
	5) The group SO(2) of rotations in two dimensions is: 2 points
	Abelian
	Non-abelian
	Finite
	Infinite
	No, the answer is incorrect.
	Score: 0
	Accepted Answers:
	Infinite
	6) Number of elements of order 2 in the group of rotational 1 point symmetries of a regular tetrahedron is:
	0 3
	6
	0 8
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	3
	7) How many elements are there in the group of rotational symmetries of an
	icosahedron?
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	(Type: Numeric) 60
	2 points
	8) Which of the following is/are false about the finite cyclic group of 2 <i>points</i> order <i>m</i> ?

It is a subgroup of SO(3).	
Its order is equal to the number of its conjugacy classes.	
Its order is a prime number.	
\square It is a subgroup of S _n , the symmetric group on <i>n</i> symbols, for a	
suitable $n < m$.	
It is a subgroup of SO(2).	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
Its order is a prime number.	
It is a subgroup of S_n , the symmetric group on n symbols, for a suitable $n < n$	r

Previous Page

End