Courses » Groups: Motion, symmetry and puzzles

Announcements Course Ask a Question Progress Mentor FAQ
Unit 6 - Week 4 - More applications of groups

Course outline

How to access the portal

Pre-requisite

Week 1- Groups, as they occur naturally

Week 2-
Structure of groups

Week 3-
Symmetries and GAP exploration

Week 4 - More applications of groups

Representing abstract groups

A quick
introduction to
group
representations
Rotations and quaternions

Rotational
symmetries of
platonic solids
Finite
subgroups of SO(3)

Assignment 4

The due date for submitting this assignment has passed
As per our records you have not submitted this
Due on 2018-09-26, 23:59 IST. assignment.
${ }^{1)}$ Let i, j, k denote elements in Hamilton's quaternions with properties $i^{2}=$ $-1, j^{2}=-1, i j=-j i=k$. Then the group generated by i has order:

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 4
2) Let i, j, k denote elements in Hamilton's quaternions with properties $i^{2}=$ $-1, j^{2}=-1, i j=-j i=k$. Then the group generated by i, j, k has order:
\square
No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 8
2 points
3) A non identity diagonal matrix M represents a rotation in three 2 points dimensions. Then which of the following is/are correct about M ?trace of M is negative.
determinant of M is negative.
$\square M^{2}$ is identity matrix.

trace of M is negative.
M^{2} is identity matrix.
determinant of M is positive.
4) What is/are the correct statement(s) about $\mathrm{SO}(3)$?

2 pointsIt has finitely many finite subgroups.It has infinitely many finite subgroups.It has finitely many infinite subgroups.It has infinitely many infinite subgroups.
No, the answer is incorrect.
Score: 0
Accepted Answers:
It has infinitely many finite subgroups.
It has infinitely many infinite subgroups.
5) The group $\mathrm{SO}(2)$ of rotations in two dimensions is:

2 pointsAbelianNon-abelianFiniteInfinite
No, the answer is incorrect.
Score: 0
Accepted Answers:
Abelian
Infinite
6) Number of elements of order 2 in the group of rotational

1 point symmetries of a regular tetrahedron is:

No, the answer is incorrect.
Score: 0
Accepted Answers:
3
7) How many elements are there in the group of rotational symmetries of an icosahedron?

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 60
2 points
8) Which of the following is/are false about the finite cyclic group of 2 points order m ?It is a subgroup of $\mathrm{SO}(3)$.Its order is equal to the number of its conjugacy classes.Its order is a prime number.It is a subgroup of S_{n}, the symmetric group on n symbols, for a suitable $n<m$.It is a subgroup of $\mathrm{SO}(2)$.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Its order is a prime number.
It is a subgroup of S_{n}, the symmetric group on n symbols, for a suitable $n<n$

