## NPTEL COURSE - Introduction to Commutative Algebra

## Assignment solution - Week 9

(1) Let $A$ be a subring of a ring $B$ such that the set $B \backslash A$ is closed under multiplication. Show that $A$ is integrally closed in $B$.
Solution. Suppose $A$ is not integrally closed in $B$. Then there is an element $b$ in $B \backslash A$ such that $b$ is integral over $A$. Let $f(x)=a_{0}+a_{1} x+\cdots+x^{n} \in A[x]$ be of smallest degree monic polynomial such that $f(b)=0$. We have

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}=0
$$

Note that $n \geq 2$ and $b \notin A$. By minimality of $n, b^{n-1}+a_{n-1} b^{n-2}+\cdots+a_{1} \notin A$. But we have

$$
b\left(b^{n-1}+a_{n-1} b^{n-2}+\cdots+a_{1}\right)=-a_{0} \in A .
$$

This a contradiction to $B \backslash A$ is closed under multiplication.
(2) Let $A$ be a commutative ring and $M$ be a Noetherian $A$-module. Prove that $A / \operatorname{Ann}(M)$ is a Noetherian ring.

Solution. Since $M$ is Noetherian $A$-module, $M$ is a finitely generated over $A$. Let $\left\{m_{1}, \ldots, m_{n}\right\}$ be generating set of $M$. Consider the ring homomorphism

$$
\phi: A \rightarrow \oplus_{i=1}^{n} M
$$

and defined by $\phi(1)=\left(m_{1}, \ldots, m_{n}\right)$. We can easy to check $\operatorname{ker} \phi=\operatorname{Ann}(M)$. Therefore

$$
A / \operatorname{ker} \phi=A / \operatorname{Ann}(M) \cong \phi(A) .
$$

Since $\oplus_{i=1}^{n} M$ is a Noetherian, $\phi(A)$ is a Noetherian. Hence $A / \operatorname{Ann}(M)$ is a Noetherian $A$-module. If $\bar{I}$ is an ideal of $A / \operatorname{Ann}(M)$, then $\bar{I}$ is an $A$-submodule of $A / \operatorname{Ann}(M)$. Therefore $\bar{I}$ is finitely generated as an $A$-submodule and hence finitely generated as an ideal. Therefore $A / \operatorname{Ann}(M)$ is a Noetherian ring.
(3) If $A$ is Noetherian, then prove that any surjective homomorphism $\phi: A \rightarrow A$ is an isomorphism.

Solution. Consider the increasing chain of ideals of $A$ :

$$
\operatorname{ker} \phi \subseteq \operatorname{ker} \phi^{2} \subseteq \cdots \subseteq \operatorname{ker} \phi^{n} \subseteq \cdots
$$

Since $A$ is Noetherian, there exists $n_{0} \in \mathbb{N}$ such that $\operatorname{ker} \phi^{n}=\operatorname{ker} \phi^{n+1}$ for all $n \geq n_{0}$, i.e., $\phi^{n}(a)=0$ if and only if $\phi\left(\phi^{n}(a)\right)=0$ for all $n \geq n_{0}$. Let $b \in \operatorname{ker} \phi$. Let $b_{1} \in A$ be such that $\phi\left(b_{1}\right)=b$. Let $b_{2}$ be such that $\phi\left(b_{2}\right)=b_{1}$ and hence $\phi^{2}\left(b_{2}\right)=b$. For each $n \geq 1$, let $b_{n} \in A$ be such that $\phi^{n}\left(b_{n}\right)=b$. Let $n \geq n_{0}$. Then $\phi^{n+1}\left(b_{n}\right)=\phi\left(\phi^{n}\left(b_{n}\right)\right)=$ 0 and hence $\phi^{n}\left(b_{n}\right)=b=0$. Therefore $\operatorname{ker} \phi=0$. Hence $\phi$ is injective.
(4) Find a composition series for $\mathbb{Z} / 30 \mathbb{Z}$.

Solution. We start by looking for a maximal subgroup say $m \mathbb{Z} / n \mathbb{Z}$. Note that $m$ is a prime divisor of $n$ and $\mathbb{Z}_{n} / m \mathbb{Z}_{n} \cong \mathbb{Z}_{m}$. Now repeat the process. In this case, we have

$$
\mathbb{Z} / 30 \mathbb{Z} \supset 2 \mathbb{Z} / 30 \mathbb{Z} \supset 6 \mathbb{Z} / 30 \mathbb{Z} \supset \overline{0}
$$

