NPTEL COURSE - Introduction to Commutative Algebra

Assignment solution- Week 8

(1) Let A be a subring of B such that B is integral over A. Let \mathfrak{n} be a maximal ideal of A. Is $B_{\mathfrak{n}}$ necessarily integral over $A_{\mathfrak{m}}$, where $\mathfrak{m}=\mathfrak{n} \cap A$?
Solution : Let $A=k\left[x^{2}-1\right]$ and $B=k[x]$. Then B is integral over A. Note that $\mathfrak{n}=(x-1)$ is a maximal ideal in B and $\mathfrak{m}=\left(x^{2}-1\right)$ is a maximal ideal in A with $\mathfrak{m}=\mathfrak{n} \cap A$. Suppose $\frac{1}{x+1} \in B_{\mathfrak{n}}$ is integral over $A_{\mathfrak{m}}$. Then there exists $n>0, \frac{a_{i}}{s_{i}} \in A_{\mathfrak{m}}$ such that

$$
\frac{1}{(x+1)^{n}}+\frac{a_{n-1}}{s_{n-1}} \frac{1}{(x+1)^{n-1}}+\cdots+\frac{a_{0}}{s_{0}}=0 .
$$

After clearing the denominators we get

$$
z \sum_{i=0}^{n} a_{i} t_{i}(x+1)^{n-i}=0
$$

where $a_{n}=1, t_{i}=s_{n-1} \cdots s_{i-1} s_{i+1} \cdots s_{0}, 0 \leq i \leq n-1, t_{n}=s_{n-1} \cdots s_{0}$ and $z \in B \backslash \mathfrak{n}$. We have

$$
z a_{0} t_{0}(x+1)^{n}+\cdots+z t_{n}=0
$$

which implies that

$$
(x+1)\left\{z a_{0} t_{0}(x+1)^{n-1}+\cdots+z a_{n-1} t_{n-1}\right\}=-z t_{n} .
$$

Therefore $x+1 \mid z t_{n}$. Since $x+1$ is a prime element, $x+1 \mid z, z \in(x+1) B \cap A=\left(x^{2}-1\right)$. This is contraction to $f \in B \backslash \mathfrak{n}$. Therefore $\frac{1}{(x+1)}$ is not integral over $A_{\mathfrak{m}}$.
(2) Let B be an integral extension of A. Prove that
(a) If $x \in A$ is a unit in B, then it is a unit in A.

Solution. Since B is integral over $A, 1 / x$ satisfies

$$
\frac{1}{x^{n}}+a_{1} \frac{1}{x^{n-1}}+\cdots+a_{n}=0
$$

where $a_{i} \in A$, for $1 \leq i \leq n$. Now multiply by x^{n-1}, we get

$$
\frac{1}{x}+a_{1}+\cdots+a_{n-1} x^{n-2}+a_{n} x(n-1)=0
$$

and

$$
\frac{1}{x}=-\left(a_{1}+\cdots+a_{n-1} x^{n-2}+a_{n} x(n-1) \in A .\right.
$$

Therefore x is a unit in A.
(b) the Jacobson radical of A is the contraction of the Jacobson radical of B.

Solution. Let J_{A} and J_{B} be Jacobson radical of A and B respectively. We need to prove that $J_{A}=J_{B} \cap A$. Let $x \in J_{B} \cap A$. Then for any $a \in A, 1+a x \in A$ is a unit in B. By (a), $1+a x$ is a unit in A. Therefore $x \in J_{A}$.

Let $x \in J_{A}$. For a maximal ideal \mathfrak{m}_{B} of $B, \mathfrak{n}=\mathfrak{m}_{B} \cap A$ is a maximal ideal in A. Therefore $x \in \mathfrak{n}=\mathfrak{m}_{B} \cap A \subseteq \mathfrak{m}_{B}$. Hence $x \in J_{B} \cap A$.
(3) If A is an integral domain, then prove that A is integrally closed in $A[x]$. Give an example of A such that A is not integrally closed in $A[x]$.
Solution. Suppose $f(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0} \in A[x] \backslash A, b_{m} \neq 0$, is integral over A. Then there is a monoic polynomial $g(t)=a_{0}+a_{1} t+\cdots a_{n-1} t^{n-1}+t^{n} \in A[t]$ such that $g(f(x))=0$. Therefore

$$
b_{m}^{n} x^{m n}+\cdots+\left(a_{n}+a_{n-1} b_{0}^{n-1}+\cdots+b_{0}^{n}\right)=0 .
$$

Hence $b_{m}^{n}=0$ so that $b_{m}=0$. This is a contradiction to the assumption that $b_{m} \neq 0$. Therefore A is integrally closed in $A[x]$.

Consider $A=\mathbb{Z}_{4}$ and $f(x)=2 x+2 \in \mathbb{Z}_{4}[x]$. Note that $f(x)^{2}=0$. Therefore $f(x)$ is integral over A but $f(x) \notin A$.

