NPTEL COURSE - Introduction to Commutative Algebra

Week 6 -Assignment solution

(1) Prove that $\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / m \mathbb{Z} \cong \mathbb{Z} / d \mathbb{Z}$, where $d=\operatorname{gcd}(m, n)$.

Solution: Recall: $A / I \otimes_{A} M \cong M / I M$. Therefore we have

$$
\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / m \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} / n(\mathbb{Z} / m \mathbb{Z})
$$

We need to show that $n(\mathbb{Z} / m \mathbb{Z})=d(\mathbb{Z} / m \mathbb{Z}) \cong d \mathbb{Z} / m \mathbb{Z}$. Since d divides $n, n(\mathbb{Z} / m \mathbb{Z}) \subseteq$ $d(\mathbb{Z} / m \mathbb{Z})$. Let $d x+m \mathbb{Z} \in d(\mathbb{Z} / m \mathbb{Z})$, where $x \in \mathbb{Z}$. Since $d=\operatorname{gcd}(m, n), d=a m+b n$, for some $a, b \in \mathbb{Z}$.

$$
\begin{aligned}
d x+m \mathbb{Z} & =(a m+b n) x+m \mathbb{Z} \\
& =b n x+m \mathbb{Z} \in n(\mathbb{Z} / m \mathbb{Z})
\end{aligned}
$$

Therefore $d(\mathbb{Z} / m \mathbb{Z}) \subseteq n(\mathbb{Z} / m \mathbb{Z})$. Hence $n(\mathbb{Z} / m \mathbb{Z})=d(\mathbb{Z} / m \mathbb{Z})$.
(2) Let A be a local ring, M and N are finitely generated A-modules. Prove that if $M \otimes_{A} N=0$, then either $M=0$ or $N=0$.

Solution: First note that if V_{1} and V_{2} are non-zero vector spaces over a field k, then $V_{1} \otimes_{k} V_{2} \neq 0$, since if v_{1} and v_{2} are bases elements of V_{1} and V_{2} respectively, then $v_{1} \otimes v_{2}$ is part of a basis for $V_{1} \otimes_{k} V_{2}$.
Let A be a local ring with the maximal ideal \mathfrak{m}. We have

$$
\begin{aligned}
\left(M \otimes_{A} N\right) \otimes A / \mathfrak{m} & \cong\left(M \otimes_{A} N\right) \otimes_{A}\left(A / \mathfrak{m} \otimes_{A / \mathfrak{m}} A / \mathfrak{m}\right) \\
& \cong\left(M \otimes_{A} A / \mathfrak{m}\right) \otimes_{A / \mathfrak{m}}\left(N \otimes_{A} A / \mathfrak{m}\right)
\end{aligned}
$$

Since $M \otimes_{A} N=0,\left(M \otimes_{A} A / \mathfrak{m}\right) \otimes_{A / \mathfrak{m}}\left(N \otimes_{A} A / \mathfrak{m}\right)=0$. We know that $M \otimes_{A} A / \mathfrak{m} \cong$ $M / \mathfrak{m} M$ and $N \otimes_{A} A / \mathfrak{m} \cong N / \mathfrak{m} N$. Therefore,

$$
M / \mathfrak{m} M \otimes_{A / \mathfrak{m}} N / \mathfrak{m} N=0
$$

Since A / \mathfrak{m} is a field, $M / \mathfrak{m} M$ and $N / \mathfrak{m} N$ are A / \mathfrak{m}-vector spaces. Therefore, either $M / \mathfrak{m} M=0$ or $N / \mathfrak{m} N=0$. If $M / \mathfrak{m} M=0$, then by Nakayama's Lemma, $M=0$. Similarly, if $N / \mathfrak{m} N=0$, then $N=0$.
(3) A multiplicatively closed subset S of A is said to be saturated if $x y \in S \Leftrightarrow x \in$ S and $y \in S$. Prove that S is saturated if and only if $A \backslash S$ is a union of prime ideals.
Solution: Recall: For any ideal I in A with $I \cap S=\emptyset$, then there is a prime ideal \mathfrak{p} containing I such that $\mathfrak{p} \cap S=\emptyset$.

Suppose S is saturated. If $x \in A \backslash S$, then $S \cap(x)=\emptyset$. Therefore, there exists a prime ideal \mathfrak{p}_{x} such that $(x) \subseteq \mathfrak{p}_{x}$ and $S \cap \mathfrak{p}_{x}=\emptyset$. Therefore $A \backslash S=\cup_{x \notin S} \mathfrak{p}_{x}$, i.e., $A \backslash S$ is a union of prime ideal of A.

Now suppose $A \backslash S=\cup_{\mathfrak{p}} \mathfrak{p}$. Then $S=\cap_{\mathfrak{p}}(A \backslash \mathfrak{p})$. For, $x, y \in A$ $x y \in S \Leftrightarrow x y \notin \mathfrak{p}$ for all such primes $\Leftrightarrow x \notin \mathfrak{p} \& y \notin \mathfrak{p} \Leftrightarrow x \in S \& y \in S$.

Therefore S is saturated set.
(4) Prove that if S is a multiplicatively closed subset of A, then $S^{-1} A$ is a flat A-module. Solution: Recall: If $M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}$ is an exact sequence of A-modules, then $S^{-1} M^{\prime} \xrightarrow{S^{-1} f} S^{-1} M \xrightarrow{S^{-1} g} S^{-1} M^{\prime \prime}$ is exact sequence of $S^{-1} A$-modules.

Let $0 \rightarrow M \rightarrow N$ be an exact sequence. Tensoring the exact sequence with $S^{-1} A$ we get $0 \rightarrow S^{-1} A \otimes_{A} M \rightarrow S^{-1} A \otimes_{A} N$. Also, $S^{-1} A \otimes_{A} M \cong S^{-1} M$ and $S^{-1} A \otimes_{A} N \cong$ $S^{-1} N$. Therefore the tensored sequence becomes $0 \rightarrow S^{-1} M \rightarrow S^{-1} N$. Since this is an exact sequence, $S^{-1} A$ is a flat A-module.

