NPTEL COURSE - Introduction to Commutative Algebra

Assignment - 3

- (1) Let I be an ideal in a commutative ring with identity, A, and P_1, \ldots, P_r be prime ideals of A. Prove that if $I \subseteq \bigcup_{i=1}^r P_i$, then $I \subseteq P_i$ for some $1 \le i \le r$. **Solution:** We will prove by induction on r. If r = 1, then we are done. Assume the result for r-1 and $I \subseteq \bigcup_{i=1}^r P_i$. If I is contained in an r-1 union of P_i 's, then by applying induction one can conclude that I is contained in one of them. Suppose, if possible, for each $i, I \nsubseteq \bigcup_{j=1, j \ne i}^r P_j$. Choose $x_i \in I$, for all $1 \le i \le r$, such that $x_i \notin P_j$, for any $j \ne i$. Since $I \subseteq \bigcup_{i=1}^r P_i$ and $x_i \notin P_j$ for $j \ne i, x_i \in P_i$, for each i. Let $z = \sum_{i=1}^r x_1 \cdots x_{i-1} x_{i+1} \cdots x_r$. Then $z \in I \setminus \bigcup_{i=1}^r P_i$, this a contradiction. Therefore $I \subseteq P_i$ for some $1 \le i \le r$.
- (2) Find the nilradical of \mathbb{Z}_{36} and \mathbb{Z}_9 .

Solution: Recall that the nilradical of ring A is the intersection of all the prime ideals of A. If P is a prime ideal of \mathbb{Z}_n , then \mathbb{Z}_n/P is a finite integral domain, so it is a field, and hence P is a maximal ideal. We only need to find the maximal ideals of \mathbb{Z}_n . We know that P is a maximal ideal of \mathbb{Z}_n if and only if $P = p\mathbb{Z}_n$ for some prime divisor p of n. Therefore the maximal ideals of \mathbb{Z}_{36} are $2\mathbb{Z}_{36}$, $3\mathbb{Z}_{36}$ and the maximal ideal of \mathbb{Z}_9 is $3\mathbb{Z}_9$. Hence $\operatorname{nil}(\mathbb{Z}_{36}) = 2\mathbb{Z}_{36} \cap 3\mathbb{Z}_{36} = 6\mathbb{Z}_{36}$ and $\operatorname{nil}(\mathbb{Z}_9) = 3\mathbb{Z}_9$.

(3) Let F be a field and let R = F[x, y]. If $I = (x^2, xy)$ and $S = \{x\}$, then compute I: S.

Solution: Clearly x and y are in I : S. Let $f \in I : S$. By definition $fx \in I$. Let

$$fx = \alpha_1 x^2 + \alpha_2 xy, \text{ where } \alpha_1, \, \alpha_2 \in R,$$
$$x(f - (\alpha_1 x + \alpha_2 y)) = 0.$$

Since R is integral domain, $f = \alpha_1 x + \alpha_2 y$. Hence $f \in (x, y)$ and I : S = (x, y). (4) If M is an A-module, then prove that $\operatorname{Hom}_A(A, M) \cong M$.

Solution: Define a map ϕ : Hom_A(A, M) \rightarrow M by $\phi(f) = f(1)$. Then for $f, g \in$ Hom_A(A, M), $\phi(f + g) = (f + g)(1) = f(1) + g(1) = \phi(f) + \phi(g)$. Also, for $\alpha \in$ A and $f \in$ Hom_A(A, M), $\phi(\alpha f) = \alpha f(1) = \alpha \phi(f)$. Therefore ϕ is an A-module homomorphism. For each $m \in M$, let $f_m : A \rightarrow M$ be the map $f_m(a) = am$. Then $\phi(f_m) = f_m(1) = m$. Therefore ϕ is surjective. Suppose $\phi(f) = f(1) = 0$. Then for any $a \in A$, f(a) = f(a.1) = af(1) = 0, i.e., f = 0. Therefore ϕ is an isomorphism.