NPTEL COURSE - Introduction to Commutative Algebra

Assignment - 3

(1) Let I be an ideal in a commutative ring with identity, A, and P_{1}, \ldots, P_{r} be prime ideals of A. Prove that if $I \subseteq \bigcup_{i=1}^{r} P_{i}$, then $I \subseteq P_{i}$ for some $1 \leq i \leq r$.

Solution: We will prove by induction on r. If $r=1$, then we are done. Assume the result for $r-1$ and $I \subseteq \bigcup_{i=1}^{r} P_{i}$. If I is contained in an $r-1$ union of P_{i} 's, then by applying induction one can conclude that I is contained in one of them. Suppose, if possible, for each $i, I \nsubseteq \bigcup_{j=1, j \neq i}^{r} P_{j}$. Choose $x_{i} \in I$, for all $1 \leq i \leq r$, such that $x_{i} \notin P_{j}$, for any $j \neq i$. Since $I \subseteq \cup_{i=1}^{r} P_{i}$ and $x_{i} \notin P_{j}$ for $j \neq i, x_{i} \in P_{i}$, for each i. Let $z=\sum_{i=1}^{r} x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{r}$. Then $z \in I \backslash \bigcup_{i=1}^{r} P_{i}$, this a contradiction. Therefore $I \subseteq P_{i}$ for some $1 \leq i \leq r$.
(2) Find the nilradical of \mathbb{Z}_{36} and \mathbb{Z}_{9}.

Solution: Recall that the nilradical of ring A is the intersection of all the prime ideals of A. If P is a prime ideal of \mathbb{Z}_{n}, then \mathbb{Z}_{n} / P is a finite integral domain, so it is a field, and hence P is a maximal ideal. We only need to find the maximal ideals of \mathbb{Z}_{n}. We know that P is a maximal ideal of \mathbb{Z}_{n} if and only if $P=p \mathbb{Z}_{n}$ for some prime divisor p of n. Therefore the maximal ideals of \mathbb{Z}_{36} are $2 \mathbb{Z}_{36}, 3 \mathbb{Z}_{36}$ and the maximal ideal of \mathbb{Z}_{9} is $3 \mathbb{Z}_{9}$. Hence $\operatorname{nil}\left(\mathbb{Z}_{36}\right)=2 \mathbb{Z}_{36} \cap 3 \mathbb{Z}_{36}=6 \mathbb{Z}_{36}$ and $\operatorname{nil}\left(\mathbb{Z}_{9}\right)=3 \mathbb{Z}_{9}$.
(3) Let F be a field and let $R=F[x, y]$. If $I=\left(x^{2}, x y\right)$ and $S=\{x\}$, then compute $I: S$.
Solution: Clearly x and y are in $I: S$. Let $f \in I: S$. By definition $f x \in I$. Let

$$
\begin{gathered}
f x=\alpha_{1} x^{2}+\alpha_{2} x y, \text { where } \alpha_{1}, \alpha_{2} \in R . \\
x\left(f-\left(\alpha_{1} x+\alpha_{2} y\right)\right)=0 .
\end{gathered}
$$

Since R is integral domain, $f=\alpha_{1} x+\alpha_{2} y$. Hence $f \in(x, y)$ and $I: S=(x, y)$.
(4) If M is an A-module, then prove that $\operatorname{Hom}_{A}(A, M) \cong M$.

Solution: Define a map $\phi: \operatorname{Hom}_{A}(A, M) \rightarrow M$ by $\phi(f)=f(1)$. Then for $f, g \in$ $\operatorname{Hom}_{A}(A, M), \phi(f+g)=(f+g)(1)=f(1)+g(1)=\phi(f)+\phi(g)$. Also, for $\alpha \in$ A and $f \in \operatorname{Hom}_{A}(A, M), \phi(\alpha f)=\alpha f(1)=\alpha \phi(f)$. Therefore ϕ is an A-module homomorphism. For each $m \in M$, let $f_{m}: A \rightarrow M$ be the map $f_{m}(a)=a m$. Then $\phi\left(f_{m}\right)=f_{m}(1)=m$. Therefore ϕ is surjective. Suppose $\phi(f)=f(1)=0$. Then for any $a \in A, f(a)=f(a .1)=a f(1)=0$, i.e., $f=0$. Therefore ϕ is an isomorphism.

