NPTEL COURSE - Introduction to Commutative Algebra

Assignment 2

(1) Let S be a set and $\mathcal{F}(S):=\{f: S \rightarrow \mathbb{R} \mid f$ is a function $\}$ with pointwise addition and pointwise multiplication. Prove that $\mathcal{F}(S)$ is a ring.
Solution: The map $O(x)=0$ is the additive identiy of $\mathcal{F}(S)$, since for each $f \in \mathcal{F}(S),(O+f)(x)=O(x)+f(x)=0+f(x)=f(x)$ and $(f+O)(x)=f(x)+0=f(x)$.
For each $f \in \mathcal{F}(S)$, let $g(x)=-f(x)$. Then $(f+g)(x)=f(x)+g(x)=$ $f(x)+-f(x)=0=O(x)$. Therefore g is the additive inverse of f.
For $f, g, h \in \mathcal{F}(S),[(f+g)+h](x)=(f(x)+g(x))+h(x)=f(x)+(g(x)+$ $h(x))=[f+(g+h)](x)$. Therefore, the addition is associative.
If $f, g \in \mathcal{F}(S)$, then for $x \in S,(f+g)(x)=f(x)+g(x)=g(x)+f(x)=$ $(g+f)(x)$. Therefore, $f+g=g+f$. Therefore $\mathcal{F}(S)$ is an abelian group.
For $f, g, h \in \mathcal{F}(S),[f(g h)](x)=f(x)(g(x) h(x))=(f(x) g(x)) h(x)=[(f g) h](x)$.
Therefore, the multiplication is associative.
For $f, g, h \in \mathcal{F}(S), \quad[(f+g) h](x)=(f+g)(x)(h(x)=(f(x)+g(x)) h(x)=$ $f(x) h(x)+g(x) h(x)=[f h+g h](x)$. Therefore, the multiplication is distributive over the addition.
Hence $\mathcal{F}(S)$ is a ring. In fact, $\mathcal{F}(S)$ is a commutative ring, since for $f, g \in$ $\mathcal{F}(S),(f g)(x)=f(x) g(x)=g(x) f(x)=(g f)(x)$.
(2) If A and B are rings and $f: A \rightarrow B$ is a ring homomorphism, then prove that ker f is an ideal of A.
Solution: If $a, b \in \operatorname{ker} f$, then $f(a+b)=f(a)+f(b)=0+0=0$. Hence $a+b \in \operatorname{ker} f$. Since by the property of homomorphism $f(0)=0,0 \in \operatorname{ker} f$. If $a \in \operatorname{ker} f$, then $f(-a)=-f(a)=0$. Therefore, $-a \in \operatorname{ker} f$. Since A is an abelian group $a+b=b+a$ is always satisfied, in particular for $a, b \in I$. Therefore I is an abelian group. Now, if $a \in I$ and $b \in A$, then $f(a b)=f(a) f(b)=0 \cdot f(b)=0$. Hence $a b \in \operatorname{ker} f$. Therefore, $\operatorname{ker} f$ is an ideal of A.
(3) Let A be a ring. Prove that $I=\{p(x) \in A[x] \mid p(0)=0\}$ is an ideal of $A[x]$. Solution: Define a map $\phi: A[x] \rightarrow A$ by $\phi(p(x))=p(0)$. Since $[p(x)+$ $q(x)]_{x=0}=p(0)+q(0)$ and $[p(x) q(x)]_{x=0}=p(0) q(0), \phi$ is a homomorphism.

Now,

$$
\begin{aligned}
\operatorname{ker} \phi & =\{p(x) \in A[x] \mid \phi(p(x))=0\} \\
& =\{p(x) \in A[x] \mid p(0)=0\} \\
& =I .
\end{aligned}
$$

Therefore, I is kernel of a homomorphism. Hence I is an ideal.
(4) Let A be a ring and \mathfrak{p} be a prime ideal of A. Prove that $\mathfrak{P}=\left\{\sum_{i=0}^{n} a_{i} x^{i} \in A[x] \mid a_{i} \in \mathfrak{p}\right\}$ is a prime ideal of $A[x]$.
Solution: Let $B=A / \mathfrak{p}$ and let $\phi: A[x] \rightarrow B[x]$ be the homomorphism $\phi\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} \bar{a}_{i} x^{i}$, where \bar{a}_{i} denote the coset of a_{i} in A / \mathfrak{p}. A polynomial is zero if and only if all its coefficients are zero. Therefore

$$
\begin{aligned}
\operatorname{ker} \phi & =\left\{\sum_{i=0}^{n} a_{i} x^{i} \in A[x] \mid \bar{a}_{i}=0\right\} \\
& =\left\{\sum_{i=0}^{n} a_{i} x^{i} \in A[x] \mid a_{i} \in \mathfrak{p}\right\} \\
& =\mathfrak{P}
\end{aligned}
$$

We have shown that \mathfrak{P} is kernel of a homomorphism. Hence \mathfrak{P} is an ideal. Moreover, since ϕ is surjective, by the first isomorphism theorem, $A[x] / \mathfrak{P} \cong$ $B[x]$. Since \mathfrak{p} is a prime ideal, $B=A / \mathfrak{p}$ is an integral domain and hence $B[x]$ is an integral domain. Therefore \mathfrak{P} is a prime ideal.
(5) Prove that \mathbb{Z}_{9} is a local ring. Write down the maximal ideal of \mathbb{Z}_{9}.

Solution: An element \bar{n} is a unit in \mathbb{Z}_{9} if and only if $\operatorname{gcd}(n, 9)=1$. Therefore, the set of all non-units of \mathbb{Z}_{9} is $\{\overline{0}, \overline{3}, \overline{6}\}$. This is an ideal in \mathbb{Z}_{9}. Hence \mathbb{Z}_{9} is a local ring with the maximal ideal $\{\overline{0}, \overline{3}, \overline{6}\}$.

