NPTEL COURSE - Introduction to Commutative Algebra

Assignment - Week 12

(1) Let A be a PID and I be a non-zero ideal in A. Prove that A / I is an Artinian ring.
(2) Let k be a field and X, Y, Z be variables. Set $R=k[X, Y, Z] /\left(X^{2}-Y^{3}-1, X Z-1\right)$ and let $x, y, z \in R$ be the images of X, Y, Z respectively. Set $t:=x+z$. Let $P=k[t]$. Prove that x, y are integral over P.
(3) Let k be an algebraically closed field and J be an ideal of $k\left[x_{1}, \ldots, x_{n}\right]$. Let $f \in$ $k\left[x_{1}, \ldots, x_{n}\right]$ be such that $f(P)=0$ for all $P \in V(J)$ and $J^{\prime}=J+(f Y-1) \subset$ $k\left[x_{1}, \ldots, x_{n}, Y\right]$. Then
(a) $V\left(J^{\prime}\right)=\emptyset$;
(b) Using (a), prove that $f \in \operatorname{rad}(J)$;
(c) Conclude that $I(V(J))=\operatorname{rad}(J)$.

