NPTEL COURSE - Introduction to Commutative Algebra

Assignment - Week 12

(1) Let A be a PID and I be a non-zero ideal in A. Prove that A / I is an Artinian ring. Solution. Recall. A ring A is Artin $\Longleftrightarrow A$ is Noetherian and $\operatorname{dim}(A)=0$. Since A is PID, A is Noetherian ring. Note that $\operatorname{dim}(A / I)=0$. Therefore A / I is an Artinian ring.
(2) Let k be a field and X, Y, Z be variables. Set $R=k[X, Y, Z] /\left(X^{2}-Y^{3}-1, X Z-1\right)$ and let $x, y, z \in R$ be the images of X, Y, Z respectively. Fix $a, b \in k$ and set $t:=x+a y+b z$. Let $P=k[t]$. Prove that x, y are integral over P.
Solution: First of all, note that R is integral over $k[x, z]$ since $y^{3}=x^{2}-1$. Also, since $x z=1, x$ as well as z satisfy the eqution $T^{2}-(x+z) T+1$ over $k[t]$. Therefore, $k[x, z]$ is integral over $k[x+z]$. Therefore R is integral over $k[x+z]=k[t]$.
(3) Let k be an algebraically closed field and J be an ideal of $k\left[x_{1}, \ldots, x_{n}\right]$. Let $f \in$ $k\left[x_{1}, \ldots, x_{n}\right]$ be such that $f(P)=0$ for all $P \in V(J)$ and $J^{\prime}=J+(f Y-1) \subset$ $k\left[x_{1}, \ldots, x_{n}, Y\right]$. Then
(a) $V\left(J^{\prime}\right)=\emptyset$;

Solution. Let
$V\left(J^{\prime}\right)=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}, \beta\right) \in k^{n+1} \mid g\left(\alpha_{1}, \ldots, \alpha_{n}, \beta\right)=0\right.$, for all $\left.g \in J^{\prime}\right\}$.

We need to show that $V\left(J^{\prime}\right)=\emptyset$. Suppose $\left(\alpha_{1}, \ldots, \alpha_{n}, \beta\right) \in V\left(J^{\prime}\right)$. Since $J \subseteq J^{\prime}$, $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in V(J)$. By given hypothesis $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$. Since $f Y-1 \in J^{\prime}$,

$$
\begin{aligned}
f\left(\alpha_{1}, \ldots, \alpha_{n}\right) \beta-1 & =0 \\
0 . \beta-1 & =0 .
\end{aligned}
$$

This is not possible. Therefore $V\left(J^{\prime}\right)=\emptyset$.
(b) Using (a), prove that $f \in \operatorname{rad}(J)$;

Solution. Since $V\left(J^{\prime}\right)=\emptyset, J^{\prime}=(1)=k\left[x_{1}, \ldots, x_{n}, Y\right]$. Now $1 \in J^{\prime}$, implies that there exist $p_{i}\left(x_{1}, \ldots, x_{n}, Y\right), Q\left(x_{1}, \ldots, x_{n}, Y\right) \in k\left[x_{1}, \ldots, x_{n}, Y\right]$ and $h_{i}\left(x_{1}, \ldots, x_{n}\right) \in J$ such that

$$
1=\sum_{\text {finite sum }} p_{i} h_{i}+(-1+y f) Q\left[x_{1}, \ldots, x_{n}, Y\right] .
$$

Since f is non-zero polynomial, $Y=f\left(x_{1}, \ldots, x_{n}\right)^{-1} \in k\left(x_{1}, \ldots, x_{n}\right)$

$$
\begin{aligned}
1 & =\sum p_{i}\left(x_{1}, \ldots, x_{n}\right) f^{-1} h_{i}\left(x_{1}, \ldots, x_{n}\right) . \\
& =\frac{\sum g_{i}\left(x_{1}, \ldots, x_{n}\right) h_{i}\left(x_{1}, \ldots, x_{n}\right)}{f^{k}} \\
f^{k} & =\sum g_{i}\left(x_{1}, \ldots, x_{n}\right) h_{i}\left(x_{1}, \ldots, x_{n}\right) . \\
f^{k} & \in J, \text { therefore } f \in \operatorname{rad}(J) .
\end{aligned}
$$

(c) Conclude that $I(V(J))=\operatorname{rad}(J)$.

Solution. Clearly, $I(V(J)) \supseteq \operatorname{rad}(J)$. From (b), we can conclude that, $I(V(J)) \subseteq$ $\operatorname{rad}(J)$. Therefore, $I(V(J))=\operatorname{rad}(J)$.

