NPTEL COURSE - Introduction to Commutative Algebra

Assignment solution- Week 10

(1) Let A be a Noetherian ring, B a finitely generated A-algebra, G a finite group of A-automorphisms of B and $B^{G}:=\{x \in B \mid f(x)=x$ for all $f \in G\}$. Show that B^{G} is a finitely generated A-algebra.
Solution. Since B^{G} is closed under addition and multiplication, it is a subring of B. We claim that B is integral over B^{G}. Let $b \in B$ and consider the polynomial in t :

$$
f(t)=\prod_{\lambda \in G}(t-\lambda b)
$$

Clearly $f(b)=0$. The action of G on B extends in a natural way to an action of G on $B[t]$, where G acts trivially on t and acts on the coefficients as the action on B. For each $\sigma \in G$,

$$
\sigma(f(t))=\prod_{\lambda \in G}(t-\sigma(\lambda b))=\prod_{\lambda \in G}(t-\lambda b)=f(t)
$$

It follows that all the coefficients of $f(t)$ are G-invariant, and so lie in B^{G}. Since $f(t)$ is monic polynomial, b is integral over B^{G}. Hence the claim. Since B is a finitely generated A-algebra and A is Noetherian, any A-subalgebra is finitely generated. Hence B^{G} is a finitely generated A-algebra.
(2) If $n \mathbb{Z} \subset \mathbb{Z}$ is an irreducible ideal, then prove that $n=p^{r}$ for some prime p and a positive integer r.
Solution. Let $n=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{\ell}^{\beta_{\ell}}$ be the prime decomposition of n. If $\ell>1$, then $n \mathbb{Z} \subset p_{i}^{\beta_{i}} \mathbb{Z}$, for all $1 \leq i \leq \ell$. Moreover, since p_{i} 's are co-prime, $n \mathbb{Z}=\cap_{i}^{\ell} p_{i}^{\beta_{i}}$. This contradicts the assumption that $n \mathbb{Z}$ is an irreducible ideal. Hence $\ell=1$ and hence $n=p_{1}^{\beta_{1}}$.
(3) Find a minimal primary decomposition of $\left(x^{3}, x^{2} y^{2}, x z^{3}\right) \subset k[x, y, z]$. List the isolated and embedded prime ideals.
Solution. Using the result that if $a b \in I$ is a minimal generator such that $\operatorname{gcd}(a, b)=$ 1 , then $I=\left[I^{\prime}+(a)\right] \cap\left[I^{\prime}+(b)\right]$, where I^{\prime} is the ideal generated by a minimal generating set of I without the element $a b$, we get

$$
\begin{aligned}
\left(x^{3}, x^{2} y^{2}, x z^{3}\right) & =\left(x^{3}, x^{2} y^{2}, x\right) \cap\left(x^{3}, x^{2} y^{2}, z^{3}\right) \\
& =(x) \cap\left(x^{3}, x^{2}, z^{3}\right) \cap\left(x^{3}, y^{2}, z^{3}\right) \\
& =(x) \cap\left(x^{2}, z^{3}\right) \cap\left(x^{3}, y^{2}, z^{3}\right) .
\end{aligned}
$$

Therefore isolated prime ideal is (x) and embedded prime ideals are (x, z) and (x, y, z).

