Assignment 7

1. The smallest prime number greater than 50 is:
2. The smallest natural number n which is a perfect square, and is divisible by $3,4,5$ and 6 is:
3. Suppose n is a natural number such that $n \equiv 1(\bmod 4), n \equiv 2(\bmod 9)$ and $n \equiv a$ $(\bmod 6)$ where $0 \leq a \leq 5$. The value of a is:
4. The smallest natural number n such that $n \equiv 0(\bmod 27), n \equiv 1(\bmod 5)$ is:
5. Let p be a prime number and a, b be integers. Suppose $a b \equiv 0(\bmod p)$, then either $a \equiv 0(\bmod p)$ or $b \equiv 0(\bmod p)$.

- True.
- False

6. Let a, b be distinct natural numbers. Let n be a natural number which is divisible by a and by b. Then n is divisible by $a b$.

- True.
- False

7. Let $n_{1}>n_{2}$ be natural numbers satisfying the properties: $n_{1} \equiv n_{2}(\bmod 13)$ and $n_{1} \equiv n_{2}(\bmod 14)$. Choose all the true statements.

- $n_{1} \geq n_{2}+182$.
- $n_{1} \geq n_{2}+27$.
- $n_{2} \geq 15$.
- $n_{1} \leq 364$.

