Assignment 6

1. Let x, y be solutions to the system of equations $2 x+5 y=1$ and $x+2 y=3$. Then the value of $x+y$ is:
2. Let $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$. Let $f(x), g(x)$ be nonzero polynomials such that $\operatorname{deg} f>\operatorname{deg} g$ and $f(A)=g(A)$. Choose all the true statements from the list below:

- $f(A)$ is a diagonal matrix.
- $\operatorname{deg} f \geq 2$.
- $\operatorname{deg} g \geq 2$.
- $\operatorname{det}(f(A))=f(6)$.

3. If A is a 2×2 matrix such that $A^{2}=\left(\begin{array}{ll}4 & 0 \\ 0 & 9\end{array}\right)$, then $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$ or $A=\left(\begin{array}{cc}-2 & 0 \\ 0 & -3\end{array}\right)$.

- True.
- False.

4. If A, B are 2×2 matrices such that $A B=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$, then both A and B must be diagonal matrices.

- True.
- False.

5. If A, B are 2×2 matrices such that $A B=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, then at least one of A or B must be $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.

- True.
- False.

6. If A, B are 2×2 matrices such that $A B=\left(\begin{array}{ll}0 & 5 \\ 0 & 1\end{array}\right)$, then $\operatorname{det} A$ or $\operatorname{det} B$ equals zero.

- True.
- False.

7. Let $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$. What is the smallest value of d for which there is a polynomial $f(x)$ of degree d such that $f(A)=0$?
