Assignment 6

- 1. Let x, y be solutions to the system of equations 2x + 5y = 1 and x + 2y = 3. Then the value of x + y is:
- 2. Let $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. Let f(x), g(x) be nonzero polynomials such that $\deg f > \deg g$ and f(A) = g(A). Choose all the true statements from the list below:
 - f(A) is a diagonal matrix.
 - $\deg f \geq 2$.
 - $\deg g \ge 2$.
 - $\bullet \det(f(A)) = f(6).$
- 3. If A is a 2×2 matrix such that $A^2 = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$, then $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ or $A = \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix}$.
 - True.
 - False.
- 4. If A, B are 2×2 matrices such that $AB = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, then both A and B must be diagonal matrices.
 - True.
 - False.
- 5. If A, B are 2×2 matrices such that $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, then at least one of A or B must be $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
 - True.
 - False.
- 6. If A, B are 2×2 matrices such that $AB = \begin{pmatrix} 0 & 5 \\ 0 & 1 \end{pmatrix}$, then $\det A$ or $\det B$ equals zero.
 - True.
 - False.
- 7. Let $A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. What is the smallest value of d for which there is a polynomial f(x) of degree d such that f(A) = 0?