Assignment 5

For problems 1-5, state True or False.

1. If $f(x, y)=(-y, x)$ and $g(x, y)=\left(\frac{x-y}{\sqrt{2}}, \frac{x+y}{\sqrt{2}}\right)$, then the composition of g with itself produces f, i.e., $g \circ g=f$.
2. Let f be an arbitrary affine transformation of \mathbb{R}^{2}. Let $f(1,1)=(p, q)$. Then $f(2,2)=$ $(2 p, 2 q)$.
3. Let f be an arbitrary linear transformation of \mathbb{R}^{2}. Let $f(1,1)=(p, q)$. Then $f(2,2)=$ $(2 p, 2 q)$.
4. Let f be an arbitrary linear transformation of \mathbb{R}^{2}. The image of the unit circle $x^{2}+y^{2}=1$ under f is a circle.
5. There is a unique linear transformation of \mathbb{R}^{2} which maps the X-axis to the line $y=2 x$, and the Y-axis to the line $y=x$.

6 . Let S be the square with vertices $(0,0),(1,0),(0,1),(1,1)$. The number of linear transformations of \mathbb{R}^{2} which map S to itself is:

- 1
- 2
- 3
- infinitely many.

7. Let $a>0$ and define the linear transformation $f(x, y)=(a x-y, a x+y)$. If f dilates areas of regions of \mathbb{R}^{2} by a factor of 6 , then the value of a is:
