Assignment 4: Solutions

1. If $f(x)$ is a polynomial of degree 2 such that (i) $f(0)>0$, (ii) $f(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$ and (iii) $f(0)=f(1), f\left(\frac{1}{2}\right)=0$. Then, the smallest possible value of $f(2)$ is: 9

Condition (ii) implies $f(x)$ can be written as

$$
f(x)=a \frac{x(x-1)}{2}+b x+c
$$

where $a, b, c \in \mathbb{Z}$. Condition (i) implies $c \geq 1$, and condition (iii) implies that $b=0$ and $a=8 c$. Thus, $f(x)=c(4 x(x-1)+1)$, and so $f(2)=9 c$. The least value occurs when $c=1$.
2. If $f(x)$ is a polynomial of degree ≤ 2 such that $f(x) \in \mathbb{Z}$ for $x=0,1,2$. Then $f(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

- True.
- False.

Any polynomial $f(x)$ of degree ≤ 2 can be written as

$$
f(x)=a \frac{x(x-1)}{2}+b x+c
$$

where $a, b, c \in \mathbb{R}$. Now, $f(x) \in \mathbb{Z}$ for $x=0,1,2$ implies that $c, b+c$ and $a+2 b+c$ are all integers. This clearly implies that a, b, c are integers, and hence that $f(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
3. If $f(x)$ is a polynomial of degree ≤ 2 such that $f(x) \in \mathbb{Z}$ for $x=0,2,4$. Then $f(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

- True.
- False.

Take for instance $f(x)=x / 2$.
4. If $f(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$, then we will call $f(x)$ an integral polynomial. Suppose f, g are integral polynomials, then which of the folllowing are integral polynomials?

- $f(x)+g(x)$.
- $f(x) g(x)$.
- $f(g(x))$.
- $\frac{f(x)(g(x)-1)}{2}$.

This follows from the definition.
5. If $f(x)+g(x)$ is an integral polynomial, then so are $f(x)$ and $g(x)$.

- True.
- False.

Take $f(x)=g(x)=x / 2$.
6. If $f(x) g(x)$ is an integral polynomial, then so are $f(x)$ and $g(x)$.

- True.
- False.

Take $f(x)=x, g(x)=\frac{x-1}{2}$.
7. If $f(g(x))$ is an integral polynomial, then so are $f(x)$ and $g(x)$.

- True.
- False.

Take $f(x)=2 x$ and $g(x)=x / 2$.

