Assignment 3: Solutions

1. The number of permutations of $1,2, \cdots, 6$ with cycle type $3+3$ is (please enter only the final numerical answer): 40

Three letters for the first 3-cycle can be chosen in ${ }^{6} C_{3}$ ways. Once we fix them, the three letters in the second 3 -cycle get fixed. Now the first set of three letters gives rise to two 3 -cycles, similarly the second set of three letters gives two 3-cycles. Therefore the number of permutations of $3+3$ type looks like ${ }^{6} C_{3} \cdot 2 \cdot 2$. But we have counted $(a b c)(d e f)$ and (def)(abc) differently. Hence the answer is $\frac{{ }^{6} C_{3} \cdot 2 \cdot 2}{2}=40$
2. The number of permutations of $1,2, \cdots, 6$ with cycle type $3+2+1$ is: 120

First choose 3 numbers for the 3 -cycle; this can be done in ${ }^{6} C_{3}=20$ ways. Arranging these 3 numbers into a cycle can be done in 2 ! ways. Next, from the remaining 3 numbers, choose 2 of them; this can be done in ${ }^{3} C_{2}=3$ ways; arranging them in a cycle can only be done in $1!=1$ way. There is no choice left for the 1 -cycle. Thus, total number equals $20 \times 2 \times 3=120$ ways.
3. Let σ be the following permutation of $1,2, \cdots, 5$ (written in cycle notation): $\sigma=(15)(24)(3)$. The number of inversions (crossings) of σ is: 10
4. Let π be the following permutation of $1,2, \cdots, 5$ (written in cycle notation): $\pi=(135)(24)$. The number of inversions of π is: 7
5. Let n be a natural number, and let S_{n} denote the set of all permutations of $1,2, \cdots, n$. What is the maximum possible number of crossings a permutation in S_{n} could have?

- $\frac{n(n+1)}{2}$.
- $\frac{n(n-1)}{2}$.
- n^{2}.
- n.
$n,(n-1), \ldots, 2,1$ (the numbers written in descending order) is the unique permutation in which every pair $i<j$ is an inversion.

6. Referring back to the previous question, how many different permutations in S_{n} have this maximum number of crossings ?

- 1.
- 2.
- n !
- n.

Refer the previous problem.
7. Let σ, π be arbitrary permutations in S_{n} (where S_{n} is as above). Then $\sigma \circ \pi$ and $\pi \circ \sigma$ have the same number of crossings.

- True.
- False.

Find some easy examples in S_{3}.

