Assignment 3

1. The number of permutations of $1,2, \cdots, 6$ with cycle type $3+3$ is (please enter only the final numerical answer):
2. The number of permutations of $1,2, \cdots, 6$ with cycle type $3+2+1$ is:
3. Let σ be the following permutation of $1,2, \cdots, 5$ (written in cycle notation): $\sigma=$ $(15)(24)(3)$. The number of inversions (crossings) of σ is:
4. Let π be the following permutation of $1,2, \cdots, 5$ (written in cycle notation): $\pi=$ (135)(24). The number of inversions of π is:
5. Among the following permutations of $1,2, \cdots, 5$ (written in one-line notation), choose all the even permutations (there could be more than one):

- 23451.
- 34521.
- 42315.
- 52341.

6. Let n be a natural number, and let S_{n} denote the set of all permutations of $1,2, \cdots, n$. What is the maximum possible number of crossings a permutation in S_{n} could have?

- $\frac{n(n+1)}{2}$.
- $\frac{n(n-1)}{2}$.
- n^{2}.
- n.

7. Referring back to the previous question, how many different permutations in S_{n} have this maximum number of crossings ?

- 1.
- 2.
- n !
- n.

8. Let σ, π be arbitrary permutations in S_{n} (where S_{n} is as above). Then $\sigma \circ \pi$ and $\pi \circ \sigma$ have the same number of crossings.

- True.
- False.

