Assignment 1: Solutions

In multiple choice questions, the correct answer is marked in red.

1. Let f, g be polynomials with $\operatorname{deg} f=3, \operatorname{deg} g \leq 3$. Suppose $f(x)=g(x)$ for $x=1,2,3,4$. What is the degree of g ?

- 0
- 1
- 2
- 3
- cannot say.

Since g agrees with f at 4 points, and both f, g have degree at most 3, we must have $f=g$; thus the degree of g is also 3.
2. Let f be a polynomial such that $f(1)=2, f(2)=7, f(3)=9$. The remainder obtained on division of $f(x)$ by $x-2$ is: 7 .
More generally, the remainder on division of $f(x)$ by $x-a$ is $f(a)$ for any real (or complex) number a.
3. Let f be a polynomial such that $f(n)=2^{n}$ for $n=0,1,2,3$. What is the minimum possible value of the degree of f ? 3 .
Let $g(x)$ be the polynomial obtained using Lagrange interpolation with the conditions $g(n)=$ 2^{n} for $n=0,1,2,3$. First compute g and check that g has degree 3. Next, let f be any polynomial such that $f(n)=2^{n}$ for $n=0,1,2,3$. Let $h(x)=f(x)-g(x)$; then $h(n)=0$ for $n=0,1,2,3$. Hence

$$
h(x)=x(x-1)(x-2)(x-3) q(x) \text { for some polynomial } q(x) .
$$

So either $h(x)=0$ or $\operatorname{deg} h \geq 4$. Thus $f(x)=g(x)+h(x)$ has degree ≥ 3, and with equality exactly when $f(x)=g(x)$.
4. Let f be a polynomial such that $f(n)=\frac{n(n-1)}{2}$ for $n=0,1,2,3$. What is the minimum possible value of the degree of f ? 2
Same reasoning as in the previous problem, except now, the interpolating polynomial $g(x)$ turns out to have degree 2.
5. Let f, g, h be polynomials of degree ≤ 1. Let $k(x)=f(x) g\left(x^{2}\right) h\left(x^{4}\right)$. If $\operatorname{deg} k=5$, what is the value of $\operatorname{deg} f+3 \operatorname{deg} g+9 \operatorname{deg} h ? 10$

The given conditions imply that $\operatorname{deg} f=1, \operatorname{deg} g=0, \operatorname{deg} h=1$.
6. Let f be a polynomial of degree ≤ 2 satisfying $f(1)=1, f^{\prime}(1)=2, f^{\prime \prime}(1)=3$. What is the value of $f(1) ? 3$
Use Taylor's formula (the version where the derivatives are given at a point other than 0; see "problem to think about" in the Taylor's formula video).
7. Let $A=(1,1)$ and $B=(1,1)$ be points in \mathbb{R}^{2}. Let D be the point in \mathbb{R}^{2} such that the vector $\overrightarrow{O D}$ satisfies $\overrightarrow{O D} \cdot \overrightarrow{O A}=3$ and $\overrightarrow{O D} \cdot \overrightarrow{O B}=-1$. What is the value of $\overrightarrow{O D} \cdot \overrightarrow{O D} ? 5$ One computes that $D=(1,2)$.
8. Let f, g be polynomials of degrees a, b respectively. Let $h(x)=f(g(x))$. The degree of h is:

- $a b$
- $a+b$
- a^{b}
- b^{a}

9. Let f, g, h be nonzero polynomials such that $f(x)-g(x)=h(x)$ and $\operatorname{deg} f=\operatorname{deg} h$. Pick the true statement:

- $\operatorname{deg} g \leq \operatorname{deg} f$.
- $\operatorname{deg} g>\operatorname{deg} f$.
- $\operatorname{deg} g$ has no relation to $\operatorname{deg} f$.

10. Let f, g, h be polynomials such that $f(x)=g(x)+x^{3} h(x)$. Then $f^{(j)}(0)=g^{(j)}(0)$ for

- $j=0$.
- $j=1$.
- $j=2$.
- all the above.

