Unit 7 - Week 6 : unit 6

Course
 outline

How to access the portal

Week 1 : Unit 1

Week 2 : Unit 2

Week 3 : Unit 3

Week 4 : unit 4

Week 5 : unit 5

Week 6 : unit 6

Lecture 26 : Gram-Schmidt and modified Gram-Schmidt algorithms

Lecture 27 :
Comparing GS
and modified GS

Lecture 28 : Introduction to eigenvalues and eigenvectors

Lecture 29 :
Eigenvlues and eigenvectors for real symmetric matrix

Lecture 30 : Positive

Week 6 Assignment 6

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-12, 23:59 IST.
assignment.

1) Gram-Schmidt process on $\left\{\begin{array}{l}1 \\ 2 \\ 3\end{array}\right\},\left\{\begin{array}{l}5 \\ 4 \\ 3\end{array}\right\}$ and $\left\{\begin{array}{l}2 \\ 1 \\ 0\end{array}\right\}$ will give

1 pointa) A set of three unit vectors
b) A set of two unit vectors
c) A set of three dependent vectors
d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
b) A set of two unit vectors
2) Gram-Schmidt process on $\left\{\begin{array}{l}1 \\ 2 \\ 0\end{array}\right\},\left\{\begin{array}{c}8 \\ 1 \\ -6\end{array}\right\}$ and $\left\{\begin{array}{l}0 \\ 0 \\ 1\end{array}\right\}$ will give

1 point
a) $\left\{\begin{array}{l}1 \\ 0 \\ 0\end{array}\right\},\left\{\begin{array}{l}0 \\ 1 \\ 0\end{array}\right\}$ and $\left\{\begin{array}{l}0 \\ 0 \\ 1\end{array}\right\}$
b) $\frac{1}{\sqrt{5}}\left\{\begin{array}{l}1 \\ 2 \\ 0\end{array}\right\}, \frac{1}{\sqrt{101}}\left\{\begin{array}{l}8 \\ 1 \\ 6\end{array}\right\}$ and $\left\{\begin{array}{l}0 \\ 0 \\ 1\end{array}\right\}$
c) $\frac{1}{\sqrt{5}}\left\{\begin{array}{l}1 \\ 2 \\ 0\end{array}\right\}, \frac{1}{3}\left\{\begin{array}{c}2 \\ -1 \\ -2\end{array}\right\}$ and $\frac{1}{3 \sqrt{5}}\left\{\begin{array}{c}4 \\ -2 \\ 5\end{array}\right\}$
d) $\frac{1}{\sqrt{5}}\left\{\begin{array}{l}1 \\ 2 \\ 0\end{array}\right\}, \frac{1}{3 \sqrt{5}}\left\{\begin{array}{c}2 \\ 1 \\ -2\end{array}\right\}$ and $\frac{1}{3}\left\{\begin{array}{c}4 \\ -2 \\ 5\end{array}\right\}$

No, the answer is incorrect.
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
NPTEL
National Programme on Technology Enhanced Learning

Feedback for Week 6 ce De Gram-Schmidt process on $\left\{\begin{array}{c}1 \\ -1 \\ 1\end{array}\right\},\left\{\begin{array}{l}1 \\ 0 \\ 1\end{array}\right\}$ and $\left\{\begin{array}{l}1 \\ 1 \\ 2\end{array}\right\}$ will give

Week 7 : Unit 7

Week 8 : Unit 8

Week 9 : Unit 9
Week 10 : Unit
10

Week 11

Week 12

Download
Videos

Assignment Solution

Interactive Session with Students
a) $\frac{1}{\sqrt{3}}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right\}, \frac{1}{\sqrt{6}}\left\{\begin{array}{l}1 \\ 2 \\ 1\end{array}\right\}$ and $\frac{1}{\sqrt{2}}\left\{\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right\}$
b) $\frac{1}{\sqrt{3}}\left\{\begin{array}{c}1 \\ -1 \\ 1\end{array}\right\}, \frac{1}{\sqrt{6}}\left\{\begin{array}{c}1 \\ -2 \\ 1\end{array}\right\}$ and $\frac{1}{\sqrt{2}}\left\{\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right\}$
c) $\frac{1}{\sqrt{3}}\left\{\begin{array}{c}1 \\ -1 \\ 1\end{array}\right\}, \frac{1}{\sqrt{6}}\left\{\begin{array}{c}1 \\ -2 \\ 1\end{array}\right\}$ and $\frac{1}{\sqrt{2}}\left\{\begin{array}{l}1 \\ 0 \\ 1\end{array}\right\}$
d) $\frac{1}{\sqrt{3}}\left\{\begin{array}{c}1 \\ -1 \\ 1\end{array}\right\}, \frac{1}{\sqrt{6}}\left\{\begin{array}{l}2 \\ 1 \\ 1\end{array}\right\}$ and $\frac{1}{\sqrt{2}}\left\{\begin{array}{l}1 \\ 0 \\ 1\end{array}\right\}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) $\frac{1}{\sqrt{3}}\left\{\begin{array}{c}1 \\ -1 \\ 1\end{array}\right\}, \frac{1}{\sqrt{6}}\left\{\begin{array}{l}1 \\ 2 \\ 1\end{array}\right\}$ and $\frac{1}{\sqrt{2}}\left\{\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right\}$
4) Why modified Gram-Schmidt is often used instead of classical Gram-Schmidt algorithm

1 pointa) For computing less number of basisb) For fast computationc) To avoid numerical instabilityd) To obtain unit vectors

No, the answer is incorrect.
Score: 0
Accepted Answers:
c) To avoid numerical instability
5) In QR Triangulationa) Q is upper triangular and R is lower triangularb) Q is diagonal and R is upper triangularc) Q is orthogonal and R is Symmetricd) Q is orthogonal and R is lower triangular

No, the answer is incorrect.
Score: 0
Accepted Answers:
d) Q is orthogonal and R is lower triangular
6) Which one cannot be an eigenvalue of a positive definite matrixa) $2+3 i$b) -4c) 0d) $\sqrt{ } 3$

No, the answer is incorrect.
Score: 0
Accepted Answers:
c) 0
7) Which one cannot be eigenvalues of a symmetric positive definite matrix

0 pointsa) $2+3 i$b) -4c) $\sqrt{ } 3$d) Π

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) $2+3 i$
8) What will be the same for matrix A and A^{2}

1 pointa) Eigenvaluesb) Tracec) Eigenvectorsd) Null space

No, the answer is incorrect.
Score: 0
Accepted Answers:
c) Eigenvectors
${ }^{9}$) Find the eigenvalues of matrix $\left[\begin{array}{cc}5 & 4 \\ -2 & 1\end{array}\right]$a) 3, 2b) $3+\sqrt{ } 6,3-\sqrt{ } 6$c) $3+2 i, 3-2 i$d) $2 i, 3+2 \sqrt{ } 22$

No, the answer is incorrect.
Score: 0
Accepted Answers:
C) $3+2 i, 3-2 i$
10)f eigenvectors of a matrix A are orthogonal then

1 pointa) A is realb) A is orthogonalc) A is positive definited) A is symmetric

No, the answer is incorrect.
Score: 0
Accepted Answers:
d) A is symmetric

Previous Page

