Unit 6 - Week 5 : unit 5

Course
 outline

How to access the portal

Week 1 : Unit 1

Week 2 : Unit 2

Week 3 : Unit 3

Week 4 : unit 4

Week 5 : unit 5
Lecture 21 :
Left and right
inverse of a
matrix
Lecture 22 :
Orthogonality
between the
subspaces
Lecture 23 :
Best estimate
Lecture 24
Projection operation and linear transformation

Lecture 25 :
Creating
orthogonal
basis vectors
Lecture
Materials
Quiz : Week 5
Assinnment 5

Week 5 Assignment 5

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-09-12, 23:59 IST.
assignment.

1) $A x=b$ has infinite solution. Then 1 point
a) A has a left inverse but no right inverse.
b) A has a right inverse but no left inverse.
c) A is invertible.
d) A has dependent rows.
a)
b)
c)
(d)

No, the answer is incorrect.
Score: 0
Accepted Answers:
b)
2) $A_{5 \times 3}$ has two independent columns. Then the dimension of null space is

1 point
a) 1
b) 2
c) 3
d) 5
a)b)
d)

No, the answer is incorrect.
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on
Technology Enhanced Learning

Week 8 : Unit 8

Week 9 : Unit 9

Week 10 : Unit 10

Week 11

Week 12

Download
Videos

Assignment

Solution

Interactive

Session with Students
\square $A_{5 \times 3}$ has two independent column. The dimension of left null space is
a) 1
b) 2
c) 3
d) 5a)b)c)d)

No, the answer is incorrect.
Score: 0
Accepted Answers:
c)
4) Check whether $a=(1,0,0)$ and $b=(0,5,2)$ are orthogonal
a) Yes as a and b are linearly independent.
b) Yes as $a \cdot b=0$
c) No as $a b \neq 0$
d) No as $a \times b \neq 0$

No, the answer is incorrect.
Score: 0
Accepted Answers:
b)
5) If $A x=b$ has a solution and y is in the left null space of A then
a) $b^{T} y=0$
b) $b=c y$
c) $a b+c y=0$ where $a, c \neq 0$
d) None of the abovea)b)c)
d)

No, the answer is incorrect.
Score: 0
Accepted Answers:
a)
6) 1 point

Find best estimate for $\left[\begin{array}{ll}1 & 3 \\ 1 & 4 \\ 0 & 0\end{array}\right]\left\{\begin{array}{l}x_{1} \\ x_{2}\end{array}\right\}=\left\{\begin{array}{l}4 \\ 5 \\ 7\end{array}\right\}$
a) $\left\{\begin{array}{l}1 \\ 0\end{array}\right\}$
b) $\left\{\begin{array}{l}1 \\ 1\end{array}\right\}$
c) $\left\{\begin{array}{l}2 \\ 1\end{array}\right\}$
d) Cannot be found

No, the answer is incorrect.
Score: 0
Accepted Answers:
b)
7) 0 points
\vec{a} and \vec{b} are orthogonal then which one is not true
a) $c \vec{a}+d \vec{b}=0$ where $c, d=0$
b) $\vec{b}^{T} \cdot \vec{a}=0$
c) \vec{b} and \vec{a} both belong to some R^{n}
d) $\square \vec{a} \square+\square \vec{b} \square<\vec{a}+\vec{b} \square$

No, the answer is incorrect.
Score: 0
Accepted Answers:
d)
${ }^{8)}$ Which one is not an orthogonal matrix
a) Identity matrix
b) Permutation matrix
c) Projection matrix
d) Rotation matrixa)
b)d)

No, the answer is incorrect.
Score: 0
Accepted Answers:
c)

An orthogonal matrix is given as $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then A^{-1} equals to
a) $\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$
b) $\frac{1}{a b}\left[\begin{array}{cc}a c & -b d \\ d & b\end{array}\right]$
c) $\frac{1}{a b}\left[\begin{array}{ll}a+b & b+d \\ c+d & d+a\end{array}\right]$
d) $\left[\begin{array}{ll}c & d \\ a & b\end{array}\right]$a)b)c)
(d)

No, the answer is incorrect.
Score: 0
Accepted Answers:
a)

If $a=\left\{\begin{array}{l}1 \\ 2\end{array}\right\}$ and $b=\left\{\begin{array}{l}-3 \\ 4\end{array}\right\}$ then find the component of a along b
a) $\left\{\begin{array}{c}-1 \\ 2\end{array}\right\}$
b) $\left\{\begin{array}{l}1 \\ 2\end{array}\right\}$
c) $\left\{\begin{array}{c}-3 \\ 4\end{array}\right\}$
d) $\frac{1}{\sqrt{5}}\left\{\begin{array}{c}-3 \\ 4\end{array}\right\}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
c)

