reviewer3@nptel.iitm.ac.in ▼

Courses » Matrix Solvers

Announcements

Course

Ask a Question

Progress

Mentor

FAQ

Unit 6 - Week 5: unit 5

Course outline	Week 5 Assignment 5	
How to access the portal	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Due on 2018-09-12, 23:59 IST.	
Week 1 : Unit 1	 1) Ax = b has infinite solution. Then a) A has a left inverse but no right inverse. 	
Week 2 : Unit 2 Week 3 : Unit 3	 b) A has a right inverse but no left inverse. c) A is invertible. d) A has dependent rows. 	
Week 4 : unit 4	a) 11 has dependent rows.	
Week 5 : unit 5	(a) (b)	
Lecture 21 : Left and right inverse of a matrix	c) d)	
Orthogonality between the subspaces	No, the answer is incorrect. Score: 0 Accepted Answers:	
Lecture 23 : Best estimate	b) 2) $A_{5\times3}$ has two independent columns. Then the dimension of null space is a) 1 b) 2 c) 3 d) 5	
Lecture 24 : Projection operation and linear transformation		
Lecture 25 : Creating orthogonal basis vectors		
Lecture Materials	(C) (d)	
Quiz : Week 5	No. the answer is incorrect.	

A project of

Funded by

In association with

Find best estimate for $\begin{bmatrix} 1 & 3 \\ 1 & 4 \\ 0 & 0 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} 4 \\ 5 \\ 7 \end{Bmatrix}$

- a) $\begin{cases} 1 \\ 0 \end{cases}$
- b) $\begin{cases} 1 \\ 1 \end{cases}$
- (z) $\begin{cases} 2 \\ 1 \end{cases}$
- d) Cannot be found
- O a
- 0 c)
- (d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

b)

7) 0 points

 \vec{a} and \vec{b} are orthogonal then which one is not true

- a) $c\vec{a} + d\vec{b} = 0$ where c, d = 0
- b) $\vec{b}^T \cdot \vec{a} = 0$
- c) \vec{b} and \vec{a} both belong to some R^n
- d) $\Box \vec{a} \Box + \Box \vec{b} \Box \lhd \vec{a} + \vec{b} \Box$
- (a)
- (b)
- (c)
- (d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

d)

8) Which one is not an orthogonal matrix

1 point

- a) Identity matrix
 - b) Permutation matrix
 - c) Projection matrix
 - d) Rotation matrix
- (a)

1 point

0 points

0	b)
0	c)
0	d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

An orthogonal matrix is given as $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then A^{-1} equals to

- b) $\frac{1}{ab} \begin{bmatrix} ac & -bd \\ d & b \end{bmatrix}$
- c) $\frac{1}{ab} \begin{bmatrix} a+b & b+d \\ c+d & d+a \end{bmatrix}$
- d) $\begin{bmatrix} c & d \\ a & b \end{bmatrix}$
- (a)

No, the answer is incorrect.

Score: 0

Accepted Answers:

If $a = \begin{cases} 1 \\ 2 \end{cases}$ and $b = \begin{cases} -3 \\ 4 \end{cases}$ then find the component of a along b

- c) $\begin{cases} -3 \\ 4 \end{cases}$
- d) $\frac{1}{\sqrt{5}} \begin{Bmatrix} -3\\4 \end{Bmatrix}$

- (c)

No, the answer is incorrect.

Score: 0

Accepted Answers:

