Unit 5 - Week 4 : unit 4

Course outline

How to access the portal

Week 1 : Unit 1

Week 2 : Unit 2

Week 3 : Unit 3

Week 4 : unit 4
Lecture 16 : Finding Null Space of a Matrix

Lecture 17 : Solving $A x=b$ when A is Singular

Lecture 18 :
Linear Independence and Spanning of a Subspace

Lecture 19 :
Basis and
Dimension of a
Vector Space
Lecture 20 :
Four
Fundamental Subspaces of a Matrix

Lecture
Material
Quiz : Week 4 :

Week 4 : Assignment 4

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2018-09-05, 23:59 IST. assignment.
1)

1 point
If $A \cdot x=b$ has infinite solution $A \cdot x_{p}=b$ is the particular solutionthen any solution x expressed as
a) $x=x_{p}+N(A)$
b) $x=x_{p}+C\left(A^{T}\right)$c) $x=x_{p}+N\left(A^{T}\right)$
d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) $x=x_{p}+N(A)$
2) If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$, find Nullspace of vector A (i. e $N(A)$)

1 point
a) $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
b) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
c) $\left[\begin{array}{l}0 \\ 0\end{array}\right]$d) $\left[\begin{array}{c}2 c \\ d\end{array}\right]$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning

Funded by

Week 7 : Unit 7
Week 8 : Unit 8
Week 9 : Unit 9
Week 10 : Unit
10
Week 11
Week 12
Download
Videos
Assignment
Solution
Interactive
Session with
Students

3)

1 point
ce De
If $x_{1} \& x_{2}$ are two independent null space vectors of A then any vector in $N(A)$ can 1 expressed asa) $C_{1} x_{1}$b) $C_{1} x_{1}+x_{2}$
c) $C_{1} x_{1}+C_{2} x_{2}$
d) $x_{1}-C_{2} x_{2}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
c) $C_{1} x_{1}+C_{2} x_{2}$
4)

1 point
$A_{n * n}$ in echelon matrix for gives m non-zero pivots. How many independent vectors a required to describe $N(A)$a) mb) nc) $n-m$d) $m-n$

No, the answer is incorrect.
Score: 0
Accepted Answers:
c) $n-m$
5)

1 point
Two vectors are given as $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ and $\left[\begin{array}{l}d \\ e \\ f\end{array}\right]$.They are linearly dependent vectors ifa) $a / d=b / e$b) $a+d=b-e=c+f$c) $a d=b e=c f$d) a,b,c are all zero

No, the answer is incorrect.
Score: 0
Accepted Answers:
d) a,b,c are all zero
6) If A has all independent column, what can be said $A \cdot x=b$

0 pointsa) Unique solutionb) Solution exists for certain condition of b
c) Infinite solutiond) None of the above

No, the answer is incorrect.
Score: 0

Accepted Answers:
a) Unique solution
7) If subspace in R^{n} has m basis vectors. thena) $m \geq n$b) $m \leq n$
c) $m+n=\infty$d) $m=n$ only

No, the answer is incorrect.
Score: 0
Accepted Answers:
b) $m \leq n$
8)

1 point
The span of three vectors $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ gives
a) Subspace of R^{3} or solid
b) Subspace of R^{1} or line
c) Subspace of R^{2} or plane
d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
d) None of the above
9)

$$
A x=b \text { with } A=\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
1 & 3 & 2 & 0 \\
2 & 0 & 4 & 9
\end{array}\right], x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text { and } b=\left[\begin{array}{c}
2 \\
5 \\
10
\end{array}\right]
$$

Find the complete solution $\left(x=x_{n}+x_{p}\right)$.
a) $x=\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 2\end{array}\right]+x_{3}\left[\begin{array}{c}-2 \\ 0 \\ 1 \\ 0\end{array}\right]$
b) $x=\left[\begin{array}{c}-4 \\ 3 \\ 0 \\ 2\end{array}\right]+x_{3}\left[\begin{array}{c}-2 \\ 0 \\ 1 \\ 0\end{array}\right]$
c) $x=\left[\begin{array}{l}4 \\ 3 \\ 0 \\ 2\end{array}\right]+x_{3}\left[\begin{array}{c}-2 \\ 0 \\ 1 \\ 0\end{array}\right]$

$$
\text { d) } x=\left[\begin{array}{l}
3 \\
0 \\
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
b) $x=\left[\begin{array}{c}-4 \\ 3 \\ 0 \\ 2\end{array}\right]+x_{3}\left[\begin{array}{c}-2 \\ 0 \\ 1 \\ 0\end{array}\right]$
${ }^{10}$ Check whether $\mathrm{Ax}=\mathrm{b}$ is solvable

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 5 \\
2 & 4 & 8 & 12 \\
3 & 6 & 7 & 13
\end{array}\right] \quad b=\left[\begin{array}{l}
2 \\
2 \\
5
\end{array}\right]
$$(a) Solvable with infinite solution(b) Solvable with unique solution(c) No solution

(d) b must be in R^{4}

No, the answer is incorrect.
Score: 0
Accepted Answers:
(c) No solution

Previous Page

