

Unit 5 - Week 4 : unit 4

Course outline	Week 4 : Assignment 4
	The due date for submitting this assignment has passed.
How to access the portal	As per our records you have not submitted this assignment. Due on 2018-09-05, 23:59 IST.
Week 1 : Unit 1	1) 1 point
Week 2 : Unit 2	If $A \cdot x = b$ has infinite solution $A \cdot x_p = b$ is the particular solution then any solution expressed as
Week 3 : Unit 3	
Week 4 : unit 4	(a) $x = x_p + N(A)$
Lecture 16 : Finding Null Space of a Matrix	b) $x = x_p + C(A^T)$ c) $x = x_p + N(A^T)$ d) None of the above
Lecture 17 : Solving Ax=b when A is Singular	No, the answer is incorrect. Score: 0
Lecture 18 : Linear Independence and Spanning of a Subspace	Accepted Answers: a) $x = x_p + N(A)$ ²⁾ If $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, find Nullspace of vector A (i. e N(A)) ¹ point
Lecture 19 : Basis and Dimension of a Vector Space	$\begin{bmatrix} a \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$
Lecture 20 : Four Fundamental Subspaces of a Matrix	$ \begin{array}{c} b \\ b \\ 1 \\ c \\ 0 \\ \end{array} \right] $
 Lecture Material 	$d \begin{bmatrix} 2c \\ d \end{bmatrix}$
OQuiz : Week 4 :	

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

In association with

G+

Week 7 : Unit 7	ce De	3) If $x_1 \& x_2$ are two independent null space vectors of A then any vector in N	1 point (A) can l
Week 8 : Unit 8		expressed as	
Week 9 : Unit 9		(a) $C_1 x_1$	
Week 10 : Unit 10		b) $C_1 x_1 + x_2$	
Week 11		c) $C_1 x_1 + C_2 x_2$	
Week 12		d) $x_1 - C_2 x_2$	
Download Videos		No, the answer is incorrect. Score: 0	
•		Accepted Answers:	
Assignment Solution		c) $C_1 x_1 + C_2 x_2$	
Interactive		4)	1 point
Session with Students		A_{n*n} in echelon matrix for gives m non-zero pivots. How many independent required to describe $N(A)$	
		🔘 a) m	
		b) n	
		○ c) n-m	
		d) m-n	
		No, the answer is incorrect.	
		Score: 0	
		Accepted Answers:	
		c) n-m	
		⁵⁾ Two vectors are given as $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ and $\begin{bmatrix} d \\ e \\ f \end{bmatrix}$. They are linearly dependent vectors if	1 point
		a) a/d= b/e	
		b) a+d=b-e=c+f	
		c) ad=be=cf	
		d) a,b,c are all zero	
		No, the answer is incorrect. Score: 0	
		Accepted Answers: d) a,b,c are all zero	
		6) If A has all independent column, what can be said A.x=b	0 points
		a) Unique solution	
		b) Solution exists for certain condition of b	
		C) Infinite solution	
		d) None of the above	
		No, the answer is incorrect. Score: 0	

Accepted Answers: a) Unique solution 7) If subspace in R^n has m basis vectors. then 1 point a) m≥n b) m ≤ n c) m+n= ∞ d) m=n only No, the answer is incorrect. Score: 0 **Accepted Answers:** b) m ≤ n 8) 1 point The span of three vectors $\begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$ gives a) Subspace of R^3 or solid b) Subspace of R^1 or line c) Subspace of R^2 or plane d) None of the above No, the answer is incorrect. Score: 0 **Accepted Answers:** d) None of the above 9) 1 point $Ax = b \text{ with } A = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 1 & 3 & 2 & 0 \\ 2 & 0 & 4 & 9 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \text{ and } b = \begin{bmatrix} 2 \\ 5 \\ 10 \end{bmatrix}$ Find the complete solution $(x = x_n + x_p)$. a) $x = \begin{bmatrix} 0\\3\\0\\2 \end{bmatrix} + x_3 \begin{bmatrix} -2\\0\\1\\0 \end{bmatrix}$ b) $x = \begin{bmatrix} -4 \\ 3 \\ 0 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ c) $x = \begin{bmatrix} 4 \\ 3 \\ 0 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

d)
$$x = \begin{bmatrix} 3 \\ 0 \\ 2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

No, the answer is incorrect. Score: 0

Accepted Answers:

	-4		-2
b) <i>x</i> =	3	$\pm r_{-}$	0
0) x =	0	T 23	1
	2.	9	0

¹⁰ Check whether Ax=b is solvable

	1	2	3	5		2	
<i>A</i> =	2	4	8	12	b =	2	
	3	6	7	13		5	

(a) Solvable with infinite solution

(b) Solvable with unique solution

(c) No solution

(d) b must be in ${{\mathbb R}}^4$

 \bigcirc

No, the answer is incorrect. Score: 0

Accepted Answers: (c) No solution

Previous Page

End

1 point