

Unit 3 - Week 2 : Unit 2

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Funded by

In association with

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 4 & 1 & 6 \\ 7 & 1 & 9 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 4 & 1 & 6 \\ 7 & 1 & 9 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 6 \\ 9 \\ 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 6 \\ 9 \\ 9 \end{bmatrix}$$

d)

No, the answer is incorrect. Score: 0

core: 0

```
Accepted Answers:

A = \begin{bmatrix} 1 & 1 & 3 \\ 4 & 1 & 6 \\ 7 & 1 & 9 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}
```

5) In solving Ax=b using gauss elimination method, by the forward elimination steps the **1** point coefficient matrix A transforms to

- a) Upper triangular matrix
- b) Lower triangular matrix
- C) Unity matrix
- d) Diagonal matrix

No, the answer is incorrect.	
Accented Answers	
a) Upper triangular matrix	
6)	1 point
	[9 3 4] [7]
Consider a system of linear equations $Ax = b$ where $A =$	4 3 4 and $b = 8$ then,
	1 1 1 3
a) Ax=b has no solution	
b) Ax=b has infinite solution	
c) Ax=b can be solved using gauss elimination method	od
d) None of the above	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
c) Ax=b can be solved using gauss elimination method	
7) If is a square matrix then	1 point
0	
a) A is lower triangular matrix if and only if A^T is lower triangular	
•	
b) A is lower triangular matrix if and only if A^T is upper triangular	
•	
c) A is lower triangular matrix if and only if A^{I} is a symmetric matrix	
d) None of the above	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
b) A is lower triangular matrix if and only if A^{*} is upper triang	gular
8) If A and B are two upper triangular square matrices and $c\epsilon R$ be any real scalar then find 0 points the correct option from the following statements	
1. cA is upper triangular	
3. AB is upper triangular	
4. AB is diagonal	
a) Only 1 and 2 are correct	
b) 1, 2 and 3 are correct	
c) Only 1 and 3 are correct	
d) 2, 3 and 4 are correct	
No, the answer is incorrect. Score: 0	
Accepted Answers: b) 1, 2 and 3 are correct	
9) Consider a $n imes n$ linear system of the form Ax-b where A then	is the upper triangular matrix 1 point

$$x_{n} = \frac{b_{n}}{a_{nn}} \text{ if } a_{nn} = 1$$
a)
$$x_{n} = \frac{b_{n}}{a_{nn}} \text{ if } a_{nn} \neq 1$$
b)
$$x_{n} = \frac{b_{n}}{a_{nn}} \text{ if } a_{nn} = 0$$
c)
$$x_{n} = \frac{b_{n}}{a_{nn}} \text{ if } a_{nn} \neq 0$$
d)

No, the answer is incorrect. Score: 0

Accepted Answers:

$$x_n = \frac{b_n}{a_m} \text{ if } a_m \neq 0$$

10)

1 point

Let A, A_1 and A_2 be $n \times n$ matrices then find the correct option from the following statements

1. If A has an inverse then there is **only** one inverse matrix

- 2. If A^{-1} exists then $\left(A^{-1}\right)^T = \left(A^T\right)^{-1}$
- 3. If A_1 and A_2 have inverses then A_1A_2 has an inverse such that $(A_1A_2)^{-1} = A_2^{-1}A_1^{-1}$
- 4. If A has an inverse then $x = A^{-1}b$ is the **only** solution of Ax = b

a) All are correct

b) Only 2 and 3 are correct

- c) 1, 2, 3 are correct but 4 is incorrect
- d) 2, 3, 4 are correct but 1 is incorrect

No, the answer is incorrect. Score: 0

Accepted Answers: a) All are correct

Previous Page

End