Courses »Matrix Solvers Announcements Course Ask a Question Progress Mentor FAQ

Unit 3 - Week 2 : Unit 2

Week 9 : Unit 9
Week 10 : Unit 10
Week 11
Week 12
Download
Videos
Assignment Solution
Interactive Session with Students

3)

If $a=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $b=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$ are two vector then $a^{T} b$ isa) Scalar
b) Vectorc) rectangular matrixd) Singular matrix

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) Scalar
4)

1 point
$(x-y)\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right]+y\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]+(z-1)\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ represent $A x=b$ then find the correct A matrix and b vector
$A=\left[\begin{array}{lll}1 & 1 & 3 \\ 4 & 1 & 6 \\ 7 & 1 & 9\end{array}\right], b=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
b) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right], b=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
c) $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 4 & 1 & 6 \\ 7 & 1 & 9\end{array}\right], b=\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right], b=\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$
d)

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\text { c) } A=\left\lceil\begin{array}{lll}
1 & 1 & 3 \\
4 & 1 & 6 \\
7 & 1 & 9
\end{array}\right\rceil, b=\left\lceil\begin{array}{l}
3 \\
6 \\
9
\end{array}\right\rceil
$$

5) In solving Ax=b using gauss elimination method, by the forward elimination steps the coefficient matrix A transforms toa) Upper triangular matrixb) Lower triangular matrixc) Unity matrixd) Diagonal matrix

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) Upper triangular matrix
6)

1 point Consider a system of linear equations $A x=b$ where $A=\left[\begin{array}{lll}9 & 3 & 4 \\ 4 & 3 & 4 \\ 1 & 1 & 1\end{array}\right]$ and $b=\left[\begin{array}{l}7 \\ 8 \\ 3\end{array}\right]$ then,a) $A x=b$ has no solutionb) $A x=b$ has infinite solutionc) $A x=b$ can be solved using gauss elimination methodd) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
c) $A x=b$ can be solved using gauss elimination method
7) If is a square matrix then

1 point
a) A is lower triangular matrix if and only if A^{T} is lower triangular
b) A is lower triangular matrix if and only if A^{T} is upper triangular
c) A is lower triangular matrix if and only if A^{T} is a symmetric matrix
d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
b) A is lower triangular matrix if and only if A^{T} is upper triangular
8) If A and B are two upper triangular square matrices and $c \epsilon R$ be any real scalar then find 0 points the correct option from the following statements

1. CA is upper triangular
2. $A+B$ is upper triangular
3. $A B$ is upper triangular
4. $A B$ is diagonala) Only 1 and 2 are correctb) 1, 2 and 3 are correctc) Only 1 and 3 are correctd) 2, 3 and 4 are correct

No, the answer is incorrect.
Score: 0
Accepted Answers:
b) 1, 2 and 3 are correct
9) Consider a $n \times n$ linear system of the form $A x-b$ where A is the upper triangular matrix 1 point then

$$
x_{n}=\frac{b_{n}}{a_{m}} \text { if } a_{n n}=1
$$

a)
b)
$x_{n}=\frac{b_{n}}{a_{m}}$ if $a_{n n} \neq 1$
c) $x_{n}=\frac{b_{n}}{a_{m}}$ if $a_{n n}=0$
d) $x_{n}=\frac{b_{n}}{a_{m}}$ if $a_{n n} \neq 0$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
x_{n}=\frac{b_{n}}{a_{m}} \text { if } a_{n n} \neq 0
$$

Let A, A_{1} and A_{2} be $n \times n$ matrices then find the correct option from the following statements

1. If A has an inverse then there is only one inverse matrix
2. If A^{-1} exists then $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$
3. If A_{1} and A_{2} have inverses then $A_{1} A_{2}$ has an inverse such that $\left(A_{1} A_{2}\right)^{-1}=A_{2}^{-1} A_{1}^{-1}$
4. If A has an inverse then $x=A^{-1} b$ is the only solution of $A x=b$a) All are correctb) Only 2 and 3 are correctc) 1,2,3 are correct but 4 is incorrectd) 2,3,4 are correct but 1 is incorrect

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) All are correct

Previous Page

