Courses »Matrix Solvers Announcements Course Ask a Question Progress Mentor FAQ

Unit 2 - Week 1 : Unit 1

Course
 outline

How to access the portal

Week 1 : Unit 1
Lecture 01 : Introduction to Matrix Algebra I

Lecture 02 : Introduction to Matrix Algebra II

Lecture 03 : System of Linear Equations

Lecture 04 : Determinant of a Matrix

Lecture 05 : Determinant of a Matrix (Contd.)

Lecture Materials

Quiz: Week 1 : Assignment 1

Feedback for Week 1

Week 2 : Unit 2

Week 3 : Unit 3
\qquad

Week 1 : Assignment 1

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-08-15, 23:59 IST. assignment.

1) Find the correct option for the following matrices

1 point
$A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], C=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], D=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & 1\end{array}\right]$
a) $A=$ identity matrix, $B=$ Hessenberg matrix, $C=$ null matrix, $D=$ upper triangular matrix
b) $A=$ identity matrix, $B=$ diagonal matrix,$C=$ symmetric matrix, $D=$ lower triangular matrix
c) $A=$ diagonal matrix, $B=$ symmetric matrix, $C=$ null matrix, $D=$ lower triangular matrix
d) $A=$ diagonal matrix, $B=$ identity matrix, $C=$ null matrix, $D=$ upper triangular matrix

No, the answer is incorrect.
Score: 0
Accepted Answers:
d) $A=$ diagonal matrix, $B=$ identity matrix, $C=$ null matrix, $D=$ upper triangular matrix
2) Find the correct option for the following matrices

1 point
$A=\left[\begin{array}{cc}\sin \theta & \cos \theta \\ \cos \theta & \sin \theta\end{array}\right], B=\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
a) At $\theta=0^{\circ}, A=$ skew-symmetric and $B=$ symmetric
b) At $\theta=90^{\circ}$, $\mathrm{A}=$ skew-symmetric and $\mathrm{B}=$ skew-symmetric
c) At $\theta=180^{\circ}, \quad \mathrm{A}=$ symmetric, $\mathrm{B}=$ symmetric
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning

Funded by

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
A^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\cos \theta & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

d)
4)
$A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ Find the $(A B)^{T}$ and $\left(A^{-1} A+B\right)^{T}$
$(A B)^{T}=\left[\begin{array}{cc}0 & 2 \\ -1 & 1\end{array}\right],\left(A^{-1} A+B\right)^{T}=\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]$
a)
b) $(A B)^{T}=\left[\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right],\left(A^{-1} A+B\right)^{T}=\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]$
b)
$(A B)^{T}=\left[\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right],\left(A^{-1} A+B\right)^{T}=\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]$d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\begin{aligned}
& (A B)^{T}=\left[\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right],\left(A^{-1} A+B\right)^{T}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right] \\
& \text { c) } \\
& \text { Find the determinant of the matrix } A=\left[\begin{array}{ccc}
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

5)a) -2b) 2c) 1d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
b) 2
${ }^{6)}$ Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{cc}\sin \theta & \cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$ at $\theta=0^{\circ}$ and $\theta=45^{\circ}$
a) $\mathrm{At} \theta=0^{\circ}$ rank $=0$ and at $\theta=45^{\circ}$ rank $=2$
b) At $\theta=0^{\circ} \quad$ rank $=2$ and at $\theta=45^{\circ}$ rank $=1$
c) At $\theta=0^{\circ}$ rank $=1$ and at $\theta=45^{\circ}$ rank $=2$d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
b) At $\theta=0^{\circ} \quad$ rank $=2$ and at $\theta=45^{\circ}$ rank $=1$
7) which of the followings is true for matrix multiplication
a) $A_{m \times n} B_{n \times p}=(A B)_{m \times p}$
b) $A_{m \times n} B_{n \times p}=(A B)_{p \times m}$
c) $A_{m \times n} B_{n \times p}=(A B)_{m \times n}$
d) $A_{m \times n} B_{n \times p}=(A B)_{n \times p}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) $A_{m \times n} B_{n \times p}=(A B)_{m \times p}$
8) If $P\left[\begin{array}{cc}\sin \theta & \cos \theta \\ -\cos \theta & \sin \theta\end{array}\right]=\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$, then P is aa) singular matrix, symmetric matrix

- b) unit matrix, symmetric matrixc) singular matrix, skew-symmetric matrixd) unit matrix, skew-symmetric matrix

No, the answer is incorrect.
Score: 0
Accepted Answers:
b) unit matrix, symmetric matrix
9) Ranks of a null matrix and a unit matrix of dimension $(n \times n)$ are respectively

1 pointa) 1 and nb) n and nc) n and 1d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
d) None of the above

10 Consider a system $A x=b$ with n number of unknowns. If $[A \mid b]$ is the augmented matrix then 1 pointa) $A x=b$ has infinitely many solution if and only if rank $[A]=r a n k[A \mid b]<n$b) $A x=b$ is inconsistence if and only if rank $[A]>\operatorname{rank}[A \mid b]$c) $A x=b$ has an unique solution if and only if rank $[A]=n>\operatorname{rank}=[A \mid b]$d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
a) $A x=b$ has infinitely many solution if and only if rank $[A]=r a n k[A \mid b]<n$

Previous Page

