

Unit 2 - Week 1 : Unit 1

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

NAtional Programme on Technology Enhanced Learning

NASSCON

In association with

G+

Week 8 : Unit 8
Week 9 : Unit 7
Week 11
Week 12
Download
Videos
Assignment
Solution
Interactive
Session with
Students
Model 12
Download
A⁻¹ =
$$\begin{bmatrix} 1 & 0 & \sin \theta \cos \theta \\ 0 & \sin \theta & 1 \end{bmatrix}$$

 $A^{-1} = \begin{bmatrix} 1 & 0 & \sin \theta \cos \theta \\ 0 & \sin \theta & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & \frac{1}{\cos \theta} \\ 0 & 1 & 0 \\ 0 & \frac{1}{\cos \theta} & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & \frac{1}{\cos \theta} \\ 0 & 1 & 0 \\ 0 & \frac{1}{\cos \theta} & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\cos \theta} & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\cos \theta} & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\cos \theta} & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \cos \theta & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0$

1 point

$$(AB)^{T} = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, (A^{-1}A + B)^{T} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

5) Find the determinant of the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 1 & 1 \end{bmatrix}$
a) -2
b) 2
c) 1
c) 1
d) None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
b) 2
c) 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 2
c) At $\theta = 0^{\circ}$ rank = 2 and at $\theta = 45^{\circ}$ rank = 2
c) At $\theta = 0^{\circ}$ rank = 1 and at $\theta = 45^{\circ}$ rank = 2
c) At $\theta = 0^{\circ}$ rank = 2 and at $\theta = 45^{\circ}$ rank = 2
c) At $\theta = 0^{\circ}$ rank = 2 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 2 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 2 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 2 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 2 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and at $\theta = 45^{\circ}$ rank = 1
c) At $\theta = 0^{\circ}$ rank = 0 and $\theta = 0^{\circ}$

	c) singular matrix, skew-symmetric matrix	
	d) unit matrix, skew-symmetric matrix	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: b) unit matrix, symmetric matrix	
ę	9) Ranks of a null matrix and a unit matrix of dimension ($n imes n$) are respectively	1 point
	a) 1 and n	
	b) n and n	
	C) n and 1	
	d) None of the above	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: d) None of the above	
-	10)Consider a system Ax=b with n number of unknowns. If [A b] is the augmented matrix th	nen 1 poin t
	\bigcirc a) Ax=b has infinitely many solution if and only if rank [A]=rank [A b] < n	
	b) Ax=b is inconsistence if and only if rank [A] > rank [A b]	
	c) Ax=b has an unique solution if and only if rank [A] = n > rank=[A b]	
	d) None of the above	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: a) Ax=b has infinitely many solution if and only if rank [A]=rank [A b] < n	
	Previous Page	nd