

Unit 10 - Week 9 : Unit 9

Course outline	Week 9 Assignment 9	
How to access the portal	The due date for submitting this assignment has passe As per our records you have not submitted this assignment.	d. Due on 2018-10-17, 23:59 IST.
Week 1 : Unit 1	1) In the steepest descent iteration step which one is the most costly operation? 1 point	
Week 2 : Unit 2	a. Vector-Vector dot product	
Veek 3 : Unit 3	b. Matrix- Vector product	
/eek 4 : unit 4	c. Matrix-Matrix product	
Veek 5 : unit 5	No, the answer is incorrect.	
/eek 6 : unit 6	Score: 0	
/eek 7 : Unit 7	Accepted Answers: b. Matrix- Vector product	
/eek 8 : Unit 8	2) In the Gauss-Seidel code ,Why does one need to store the	he old values of x? 1 point
/eek 9 : Unit 9	a. For computing updated value of x.	
	b. To check for the convergence	
Lecture 41 :	c. for Over-relaxation	
computer programs for	d. for under-relaxation.	
basic iterative methods	No, the answer is incorrect.	
Lecture 42	Score: 0	
Developing	Accepted Answers:	
computer programs for	3) under which assumption, <i>f</i> and <i>Af</i> are independent?	1 poi
based methods	a f is zero vector	
Locture 42 ·	b. f is $N(A)$	
Introduction to	c. f is an eigenvector of A.	
Krylov subspace	d. None of the above	

Funded by

G+

Iterative methods for solving linear systems using	Ce De Accepted Answers:	
Krylov subspace methods	4) Arnoldi's method gives the following matrix with orthogonal columns	1 point
 Lecture Materials 	$a.H_m$	
Quiz : Week 9 Assignment 9	$b. ar{H_m}$	
Feedback for Week 9	\circ c. AV_m	
Week 10 : Unit 10	$d. V_m$	
Week 11	No, the answer is incorrect. Score: 0	
Week 12	Accepted Answers:	
Download Videos	5) In full orthogonal method, the basis of krylov subspace is obtained through	1 point
Assignment Solution	a. Q-R factorizationb. Arnoldi-modified Gram-Schmidt method	
Interactive Session with Students	c. Minimization of $\ \beta e_i - H_m y\ $ d. projection of residual into L_m	
	a a	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	6) Due to which factor FOM is called an orthogonal method?	1 point
	$a. x_m$ lies in an affine space	
	$b.L_m=K_m$	
	c. Residual is orthogonal to K_m	
	$d_{L_m} = AK_m$	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	$o. L_m = \kappa_m$	1 point
	· ·	,

Lanczos method is

 a. a transpose invariant method b. an orthogonal projection method c. an oblique projection method d. a recursive method 	
a b c d	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
8) Which matrix assume a tridiagonal form in Lanczos method? 1 point	:
$a. H_m$	
$b. K_m$	
C V.	
$d. Y_m$	
No, the answer is incorrect. Score: 0	
Accepted Answers: $a. H_m$	
9) 1 point In any Krylov subspace method, final approximate solution is given as $x_{i} = x_{i} + V_{i}$	
there y_m is	y _m
a. A scalar b. A upper-triangular matrix	
c. A unit column vector	
a a	
🔘 d	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
10)Which of the following method use a recursive relation? 1 point	:
a. Direct Lanczos method	
b. Any krylov subspace method	

Matrix Solvers - - Unit 10 - Week 9 : Unit 9

c. FOM	
 Okara Steepest Descent method No, the answer is incorrect. Score: 0 	
Accepted Answers: a. Direct Lanczos method	
Previous Page	End