| | | reviewer3@nptel.iitm.ac.in v | |
| :--- | :--- | :--- | :--- | :--- |
| Courses »Matrix Solvers | Announcements Course | Ask a Question | Progress Mentor FAQ |

Unit 10 - Week 9 : Unit 9

Week 9 Assignment 9

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2018-10-17, 23:59 IST. assignment.

Course outline	
	How to access the portal
	Week 1 : Unit 1
	Week 2 : Unit 2
	Week 3 : Unit 3
	Week 4 : unit 4
	Week 5 : unit 5
	Week 6 : unit 6
	Week 7 : Unit 7
	Week 8 : Unit 8
	Week 9 : Unit 9
	Lecture 41 : Developing computer programs for basic iterative methods
	Lecture 42 : Developing computer programs for projection based methods
	Lecture 43 : Introduction to Krylov subspace

1) In the steepest descent iteration step which one is the most costly operation? 1 pointa. Vector-Vector dot productb. Matrix- Vector productc. Matrix-Matrix productd. Updating solution Variable

No, the answer is incorrect.
Score: 0
Accepted Answers:
b. Matrix- Vector product
2) In the Gauss-Seidel code ,Why does one need to store the old values of x ?

1 pointa. For computing updated value of x.b. To check for the convergencec. for Over-relaxation
d. for under-relaxation.

No, the answer is incorrect.
Score: 0
Accepted Answers:
b. To check for the convergence
3) under which assumption, f and $A f$ are independent?
a. f is zero vector
b. f is $N(A)$
c. f is an eigenvector of A.
d. None of the above
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

Lanczos method is
a. a transpose invariant method
b. an orthogonal projection method
c. an oblique projection method
d. a recursive method

No, the answer is incorrect.
Score: 0
Accepted Answers:
b
8) Which matrix assume a tridiagonal form in Lanczos method?

1 point
a. H_{m}
b. K_{m}
c. V_{m}
d. Y_{m}

No, the answer is incorrect.
Score: 0
Accepted Answers:
a. H_{m}
9)

1 point
In any Krylov subspace method, final approximate solution is given as $x_{m}=x_{0}+V_{m} y_{m}$ here y_{m} is
a. A scalar
b. A upper-triangular matrix
c. A unit column vector
d. A column vector

No, the answer is incorrect.
Score: 0
Accepted Answers:
da. Direct Lanczos methodb. Any krylov subspace methodc. FOMd. Steepest Descent method

No, the answer is incorrect.
Score: 0
Accepted Answers:
a. Direct Lanczos method

