

Courses » Modeling Transport Phenomena of Microparticles

reviewer2@nptel.iitm.ac.in ▼

Announcements

Course

Ask a Question

Progress

Unit 6 - Week 5

Course outline

How to access the portal

Week 1

Week 2

Week 3

Week 4

Week 5

- O Lecture 21: Introduction to **Elctrokietics**
- Lecture 22: Basics on Electrostatics
- Lecture 23: Transport Equations for Electrokinetics, Part-I
- O Lecture 24: Transport Equations for Electrokinetics, Part-II
- O Lecture 25: Electric Double Layer
- Quiz : Week 5 Assignment
- O Week 5: Lecture
- Week 5 Assignment solutions

Week 6

Week 7

Week 8

Week 5: Assignment

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Due on 2017-03-04, 23:59 IS

Modeling Transport Phenomena of Microparticles Week 5 Assignment

SI units of electrokinetic quantities involving in all subsequent assignments are: Pa (Pascal) = kg m⁻¹s⁻² for pressure; Pa s (Pascal second) = kg m⁻¹s⁻¹ for Dynamic viscosity; A (Ampere) for electric current; C (Coulomb) for electric charge; V (Volt) for electric potential; mol (mole) for the quantity of mass; **S** (Siemens)=kg⁻¹m⁻²s³A² for electric conductance.

Consider a point charge q=0.001 C located at the origin. Determine the electric potential at a distance $5\mu m$ from the origin.

Following electrokinetic parameters can be used for all problems: $\phi_0 = RT/F = k_BT/e = 0.02586V$; permittivity, $\varepsilon_e = 695.39 \times 10^{-12} C/Vm$; elementary charge, $e = 1.602 \times 10^{-19} C$, diffusivity of Na^+ ion, $D_{Na^+} = 1.33 \times 10^{-9} m^2/s$ and diffusivity of Cl^- ion, $D_{Cl^-} = 2.03 \times 10^{-9} m^2/s$. Also, $1 \mu m = 10^{-6} m$ and $1nm = 10^{-9}m.$

a) $2.2887 \times 10^{13} V$

b) $2.2887 \times 10^{10} V$

c)11.43 \times 10¹¹ V

d) $4.577 \times 10^{10} V$

No, the answer is incorrect.

Accepted Answers:

 $b)2.2887 \times 10^{10} V$

2) Consider a point charge q = 0.001C is placed within the center of volume enclosed by a sphere. 1 point Find the flux of the electric field through the surface of the sphere.

a) $2.867 \times 10^6 Vm$

b) $1.438 \times 10^6 Vm$

c) $-2.876 \times 10^6 Vm$

d) $1.438 \times 10^{-6} Vm$ No, the answer is incorrect.

Score: 0

Accepted Answers:

b) $1.438 \times 10^6 Vm$

3) Calculate the Debye length for $10mol/m^3$ solution of NaCl.

1 point

a) $3.04 \times 10^{-9} m$

b) $3.04 \times 10^{-10} m$

c) $0.328947 \times 10^9 m^{-1}$

```
d) 3.28947 \times 10^9 m^{-1}
  No, the answer is incorrect.
  Score: 0
  Accepted Answers:
  a) 3.04 \times 10^{-9} m
If the surface potential of a planer surface is 2.586 \times 10^{-3} V which is placed in 1-1 symmetric electrolyte so
with bulk molar concentration 1mol/m^3, then find the surface charge density.
    a) 0.931 \times 10^{-4} C/m^2
    b) -0.931 \times 10^{-4} C/m^2
    c) 1.8627 \times 10^{-4} C/m^2
    d) 3.725 \times 10^{-4} C/m^2
  No, the answer is incorrect.
  Score: 0
  Accepted Answers:
  c) 1.8627 \times 10^{-4} C/m^2
A charged surface with surface potential \zeta = 0.07758V is placed in a 2:1 binary electrolyte of bulk ionic concentra
10mol/m^3. Use Debye-Huckel approximation to obtain the induced electric potential at a distance x nm from the s
    a) \psi = 0.07758 exp(0.518x)V
    b) \psi = 0.0388 exp(-0.518x)V
    c) \psi = 0.07758exp(-0.518x)V
    d) \psi = 0.07758exp(-1.93x)V
  No, the answer is incorrect.
  Accepted Answers:
  c) \psi = 0.07758exp(-0.518x)V
                                                                                                               1 point
A charged surface with surface potential 0.2 V is in contact with an NaCl electrolyte with bulk molar concentration
150 mol/m^3. Find the electric potential at a point 0.5 nm far from the surface, using the Debye-Huckel approximati
    a) 0.053 V
    b) 1.06 V
    o) 0.53 V
    d) 0.106 V
  No, the answer is incorrect.
  Accepted Answers:
  d) 0.106 V
                                                                                                               1 point
Using Boltzmann equation, calculate the ionic concentration of Na^+ at the point stated in problem 6.
    a) 16.58 mol/m^3
    b) 2.486 mol/m^3
    c) 0.0656 mol/m^3
    d) 4.972 mol/m^3
  No. the answer is incorrect.
  Score: 0
  Accepted Answers:
  b) 2.486 mol/m^3
                                                                                                               1 point
Using Boltzmann equation, calculate the ionic concentration of Cl^- at the point described in the problem 6.
```


Previous Page

End

A project of

National Programme on
Technology Enhanced Learning

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

In association with

Funded by

Government of India
Ministry of Human Resource Development

Google