

reviewer2@nptel.iitm.ac.in ▼

Courses » Modeling Transport Phenomena of Microparticles

Announcements

Course

Ask a Question

Progress

Unit 5 - Week 4

Course outline

How to access the portal

Week 1

Week 2

Week 3

Week 4

- Lecture 16: Introduction to porous media
- Lecture 17: Flow through porous media – elementary geometries
- Lecture 18: Flow through composite porous channels
- Lecture 19: Modeling transport of particles inside capillaries
- Lecture 20: Modeling transport of microparticles – some applications
- Quiz : Week 4: Assignment
- Week 4 Lecture Material
- Week 4 Assignment Solution

Week 5

Week 6

Week 7

Week 8

Week 4: Assignment

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Due on 2017-02-22, 23:59 IS

Modeling Transport Phenomena of Micro-particles Week 4: Assignment

Note: Follow the notations used in the lectures. Symbols have their usual meanings.

Consider a sponge which is in the shape of a cube having each side 5 m. If the volume of the void part (hallow of the cube is 8 m³ then the porosity of the cube is

- (a) 0.04
- (b) 0.064
- (c) 0.25
- (d) 0.08

No, the answer is incorrect.

Score: 0

Accepted Answers:

(b) 0.064

2) The S.I unit of permeability is

1 point

- (a) m
- (b) m/s
- (a) m
- (c) m²
- (d) m^2/s

No, the answer is incorrect. Score: 0

Accepted Answers:

(c) m^2

3)

2 points

Consider a sphere of radius 3 cm which is made of gravel. The volume occupied by the void is 60 cm³. If the r grain diameter of the gravel is 2 mm, then the permeability of the sphere is (hint: use Carman Kozney relation)

- ()
- (a) 4.8×10^{-2} cm²
- (b) $2.8 \times 10^{-2} \text{cm}^2$
- (c) $4.8 \times 10^{-4} \text{cm}^2$
- (d) $2.8 \times 10^{-4} \text{cm}^2$

No, the answer is incorrect.

Score: 0

Accepted Answers:

(d) 2.8×10^{-4} cm²

4) 1 point

Consider flow through a pipe of diameter 20 cm which is filled with a porous material of permeability 10^{-5} cm the total pressure drop is 10² dyn/cm² which is taking place over a length 10 cm and the viscosity of the flowin fluid is 10^{-3} dyn. s/cm², then the total discharge (volume flux, Q) using Darcy equation is

(b) $10\pi \text{ m}^3/\text{s}$

(c) $18\pi \text{ m}^3/\text{s}$

(d) $20\pi \text{ m}^3/\text{s}$ No, the answer is incorrect.

Score: 0

Accepted Answers: (b) $10\pi \text{ m}^3/\text{s}$

4 points

Consider a channel filled with anisotropic porous material. Let the flow inside the porous media be governed by equation of the form $-\nabla p + \mu \nabla^2 \mathbf{u} - \mu \mathbf{K}^{-1} \mathbf{u} = 0$, where **K** is the permeability of the medium that is given by

matrix $\mathbf{K} = \begin{pmatrix} K_1 & K_2 \\ K_2 & K_3 \end{pmatrix}$, $K_1 K_3 > K_2^2$, then the x-component of the momentum equation is

(a)
$$-\frac{\partial p}{\partial x} + \mu \nabla^2 u - \frac{\mu}{K_1 K_3 - K_2^2} (K_3 u - K_2 v) = 0$$

(b)
$$-\frac{\partial p}{\partial x} + \mu \nabla^2 u - \frac{\mu}{K_1 K_3 - K_2^2} (K_1 u + K_2 v) = 0$$

(c)
$$-\frac{\partial p}{\partial x} + \mu \nabla^2 u - \frac{\mu}{K_2^2 - K_1 K_3} (K_1 u + K_2 v) = 0$$

(d)
$$-\frac{\partial p}{\partial x} + \mu \nabla^2 u - \frac{\mu}{K_1 K_2 - K_2^2} (K_3 v - K_2 u) = 0$$

No, the answer is incorrect.

Score: 0

Accepted Answers: (a)
$$-\frac{\partial p}{\partial x} + \mu \nabla^2 u - \frac{\mu}{K_1 K_3 - K_2^2} (K_3 u - K_2 v) = 0$$

6) For very low values of permeability, flow inside a porous medium is supposed to be governed by 1 point

(a) Darcy equation

(b) Stokes equation

(c) Euler equation

(d) Brinkman equation

No, the answer is incorrect.

Score: 0

Accepted Answers:

(a) Darcy equation

4 points

Consider a unidirectional flow (along x-direction) between two parallel plates located at y = h and y = 0 under pressure gradient. The lower plate is stationary and upper plate is moving with a velocity U. If the effective vis and the dynamic viscosity are equal and $\alpha^2 = \frac{1}{K}$ then the velocity profile is

(a)
$$u(y) = \frac{1}{\alpha^2} \frac{\sinh \alpha y}{\sinh \alpha h} U$$

(b)
$$u(y) = \frac{\mu}{\alpha^2} \frac{\sinh \alpha y}{\sinh \alpha h} U$$

(c)
$$u(y) = \mu \frac{\sinh \alpha y}{\sinh \alpha h} U$$

(d)
$$u(y) = \frac{\sinh \alpha y}{\sinh \alpha h} U$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

(d)
$$u(y) = \frac{\sinh \alpha y}{\sinh \alpha h} U$$

Consider a unidirectional flow (along x-direction) between two parallel plates located at y = h and y = 0a constant pressure gradient $\frac{dp}{dx} = G$. The lower plate is stationary and the upper plate is moving with a velocity

If the effective viscosity and the dynamic viscosity are equal and $\alpha^2 = \frac{1}{K}$, then the velocity profile is

(a)
$$\frac{1}{\alpha^2 u \sinh \alpha h} \left(G \sinh \alpha h (-1 + \cosh(\alpha y)) - \sinh(\alpha y) (G \cosh \alpha h - \mu \alpha^2 U - G) \right)$$

(b)
$$\frac{1}{\alpha^2 \mu \sinh \alpha h} \left(G \sinh \alpha h (-1 + \cosh(\alpha y)) - \sinh(\alpha y) (G \cosh \alpha h - \mu \alpha^2 U - 1) \right)$$

(c)
$$\frac{1}{\alpha^2 \mu \sinh \alpha h} \left(G \sinh \alpha h (-1 + \cosh(\alpha y)) - \sinh(\alpha y) (G \cosh \alpha h - \mu \alpha^2 - G) \right)$$

(d)
$$\frac{1}{\alpha^2 \mu \sinh \alpha h} \Big(G \sinh \alpha h (-1 + \cosh(\alpha y)) - \sinh(\alpha y) (\cosh \alpha h - \mu \alpha^2 U - 1) \Big)$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

(a)
$$\frac{1}{\alpha^2 \mu \sinh \alpha h} \Big(G \sinh \alpha h (-1 + \cosh(\alpha y)) - \sinh(\alpha y) (G \cosh \alpha h - \mu \alpha^2 U - G) \Big)$$

6 points

Consider the Brinkman equation in two-dimensions: $0 = -\nabla p + \mu \nabla^2 \mathbf{u} - \frac{\mu \mathbf{u}}{K}$. If the stream function is introduced then the corresponding equation satisfied by the stream function is

(a)
$$\nabla^2(\nabla^2 - \frac{1}{K})\psi = 0$$

(b)
$$\nabla^2 (\mu \nabla^2 - \frac{1}{K}) \psi = 0$$

(c)
$$\nabla^2(\nabla^2 - K)\psi = 0$$

(d)
$$\nabla^4 \psi = 0$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

(a)
$$\nabla^2 (\nabla^2 - \frac{1}{K}) \psi = 0$$

4 points

Consider a flow through porous medium that is governed by the extended Brinkman equation:

$$\rho\left(\frac{\partial \mathbf{u}'}{\partial t'} + \mathbf{u}' \cdot \nabla \mathbf{u}'\right) = -\nabla p' + \mu \nabla^2 \mathbf{u}' - \frac{\mu \mathbf{u}'}{K},$$

where $\mathbf{u} = (u, v)$ represent the velocity. In order to non-dimensionalize the above equation, the following dimensionless variables are used: $x' = \frac{x}{L}$, $y' = \frac{y}{L}$, $t' = \frac{Ut}{L}$, $u' = \frac{u}{U}$, $v' = \frac{v}{U}$, $p' = \frac{p}{uUU}$

 $Da = \frac{K}{L^2}$. If the corresponding x-momentum equation is given by

$$\alpha\left(\frac{\partial u'}{\partial t'} + u'\frac{\partial u'}{\partial x'} + v'\frac{\partial u'}{\partial y'}\right) = -\frac{1}{\Lambda}\frac{\partial p'}{\partial x'} + \beta\left(\frac{\partial^2 u'}{\partial x'^2} + \frac{\partial^2 u'}{\partial y'^2}\right) - \gamma u',$$

then the parameters α , β , γ and Λ are given by

(a)
$$\alpha = Re$$
, $\beta = -1$, $\gamma = \frac{1}{Da}$, $\Lambda = 1$

(b)
$$\alpha = \frac{1}{Re}$$
, $\beta = 1$, $\gamma = \frac{1}{Da}$, $\Lambda = 1$

(c)
$$\alpha = Re$$
, $\beta = Re$, $\gamma = \frac{1}{Da}$, $\Lambda = 1$

(d)
$$\alpha = Re$$
, $\beta = 1$, $\gamma = \frac{1}{Da}$, $\Lambda = 1$

No, the answer is incorrect. Score: 0

Accepted Answers:

(d)
$$\alpha = Re$$
, $\beta = 1$, $\gamma = \frac{1}{Da}$, $\Lambda = 1$

Previous Page

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Funded by

Government of India Ministry of Human Resource Development