Assignment - 2

Curves AND surfaces

July 26, 2016

Total Marks: 30

1. Show that the sphere $S^{2}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\}$ can not be covered by a single surface patch.
2. Verify that following are regular smooth surfaces:
(i) plane, (ii) sphere, (iii) level surfaces of a smooth function f : $\mathbb{R}^{2} \longrightarrow \mathbb{R}$, (iv) ellipsoid, (v) torus.
3. Show that the surface $S=\left\{(x, y, z): z=x^{2}-y^{2}, z>\right.$ $0\}$ (called hyperbolic paraboloid) can be parametrized as $\sigma(r, \theta)=$ $\left(r \cosh \theta, r \sinh \theta, r^{2}\right)$. Find the open set $U \subset \mathbb{R}^{2}$ where σ is defined. [5]
4. Find the equation of the tangent plane of the surface in Exercise 3 at the point $(1,0,1)$.
5. Show that tangent plane of a regular smooth surface is invariant under reparametrization.
