## Assignment - 3

## Differential Calculus in Several Variables

March 29

1. Express $x^{2}+x y+y^{2}=$ in powers of $(x-1)$ and $(y-2)$. (Use Taylor's formula).
2. Let $f$ be real-valued and assume that the directional derivatives $D_{u} f(x+t u)$ exits for each $t \in[0,1]$. Prove that for some $\theta \in(0,1)$ we have $f(x+u)-f(x)=D_{u} f(x+\theta u)$.
3. If $f$ is real-valued and if the directional derivatives $D_{u} f(x)=0$ for every $x$ in an open ball $B(x, \delta)$ and every directions $u$, prove that $f$ is constant on $B(x, \delta)$.
4. Investigate the following functions for maxima and minima or saddle points.
(a) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f(x, y, z)=x^{2} y+y^{2} z+z^{2}-2 x$.
(b) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f(x, y, z)=\left(a x^{2}+b y^{2}+c z^{2}\right) e^{-x^{2}-y^{2}-z^{2}}$.
5. Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, U$ open, has continuous first and second order partial derivatives and $X \in U$ is a stationary point for $f$. Let $H=\left(\left(\frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{i}}\right)\right)$ be the second derivative of $f$ at $X$. Denote by $H_{k}$ the $k$ th principal minor of $H$.

Prove the following:
(a) If $\operatorname{det} H_{k}<0$ for some $k=1,2, \ldots, n$ then $X$ is a saddle point.
(b) If $\operatorname{det} H \neq 0$ then
(i) $f$ has a local minimum at $X$ if and only if $\operatorname{det} H_{k}>0$ for all $k$.
(ii) $f$ has a local minimum at $X$ if and only if $(-1)^{k} \operatorname{det} H_{k}>0$ for all $k$.
(iii) $f$ has a saddle point at $X$ if and only if it is neither local maximum or minimum.
(c) If $\operatorname{det} H=0$ then the test is inconclusive (give an example).
6. Find the shortest distance from the point $(a, 0)$ to the parabola $y^{2}+4 x=0$.
7. Find the point on the line of intersection of the two planes $a x+$ $b y+c z+d=0$ and $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ which is nearest to the origin.

