Assignment-2

Differential Calculus in Several Variables March 21, 2016

1. Let $U \subseteq \mathbb{R}^{n}$ and $f: U \rightarrow \mathbb{R}^{m}$. Write $f=\left(f_{1}, f_{2}, \cdots, f_{m}\right)$ where $f_{i}: U \rightarrow \mathbb{R}$. Prove that f is differentiable at $X_{0} \in$ int U if and only if each f_{i} is differentiable at X_{0}. Express $J f\left(X_{0}\right)$ in terms of $\nabla f_{i}\left(X_{0}\right), i=1,2, \cdots, m$.
2. Let f, g be differentiable functions from \mathbb{R}^{n} to \mathbb{R}^{m}. Assume that f is differentiable at $X_{0}, f\left(X_{0}\right)=0$ and g is continuous at X_{0}. Let $h(x)=g(X) \cdot f(X)$. Prove that h is differentiable at X_{0} and compute its derivative.
3. Let $f(x, y)=(\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Compute the Jacobian.
4. Prove that given a point $X_{0} \in \mathbb{R}^{n}$ there is no real valued function on \mathbb{R}^{n} such that $D_{u} f\left(X_{0}\right)>0$ for every direction $u \in \mathbb{R}^{n}$. Give an example such that $D_{u} f\left(X_{0}\right)>0$ for a fixed direction u and any point X_{0}.
5. Let f be real-valued function differentiable at $X_{0} \in \mathbb{R}^{n}$ and $\left\|\nabla f\left(X_{0}\right)\right\| \neq 0$. Show that there is one and only one vector Y_{0} such that $\left|D f_{X_{0}}\left(Y_{0}\right)\right|=\left\|\nabla f\left(X_{0}\right)\right\| \neq 0$.
6. Compute $\nabla f(x, y)$ at those points in \mathbb{R}^{2} where it exists.
(a) $f(x, y)=\left\{\begin{array}{ll}x^{2} y^{2} \log \left(x^{2}+y^{2}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$.
(b) $f(x, y)= \begin{cases}x y \sin \frac{1}{x^{2}+y^{2}} & \text { if } \quad(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}$
7. Given $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ define $F(r, \theta)=f(r \cos \theta, r \sin \theta)$. Compute first and second order partial derivatives of F in terms of those of f. Verify that $\left.\|\nabla f(r \cos \theta, r \sin \theta)\|^{2}=\left[\frac{\partial F}{\partial x}(r, \theta)\right]^{2}+\frac{1}{r^{2}} \frac{\partial F}{\partial y}(r, \theta)\right]^{2}$.
8. Assume $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable at each point of \mathbb{R}^{2}. Let g_{1}, g_{2} are defined from \mathbb{R}^{3} to \mathbb{R} by

$$
g_{1}(x, y, z)=x^{2}+y^{2}+z^{2}, \quad g_{2}(x, y, z)=x+y+z .
$$

Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, g(x, y, z)=\left(g_{(}(x, y, z), g_{2}(x, y, z)\right)$ and $h=f \circ g$. Show that

$$
\|\nabla h\|^{2}=4\left(\frac{\partial f}{\partial x_{1}}\right)^{2} g_{1}+4\left(\frac{\partial f}{\partial x_{1}}\right)\left(\frac{\partial f}{\partial x_{2}}\right) g_{2}+3\left(\frac{\partial f}{\partial x_{2}}\right)^{2} .
$$

9. Let $U \subseteq \mathbb{R}^{n}$ be an open set and $f: U \rightarrow \mathbb{R}$ satisfies $f(\lambda X)=$ $\lambda f(X)$ for every $X \in U$, every $\lambda \in \mathbb{R}$ and some $p>0$ such that $\lambda X \in U$. If f is differentiable at $X_{0} \in U$ show that $X \dot{\nabla} f\left(X_{0}\right)=p f(X)$.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by $f(t)=(\cos t, \sin t)$. Show that the mean value formula $f(y)-f(x)=f^{\prime}(z)(y-x)$ does not hold.
11. Show that any open connected set in \mathbb{R}^{n} is polygonally connected; meaning, if $U \subseteq \mathbb{R}^{n}$ is open connected and $X, Y \in U$ then there exists $Z_{0}=X, Z_{1}, Z_{2}, \cdots Z_{k}=Y$ such that X and Y can be connected by lines starting from Z_{0} to Z_{1} then Z_{1} to Z_{2} so on and finally Z_{n-1} to Z_{n}.
