Assignment - 2

Differential Calculus in Several Variables March 21, 2016 1. Let $U \subseteq \mathbb{R}^n$ and $f : U \to \mathbb{R}^m$. Write $f = (f_1, f_2, \dots, f_m)$ where $f_i : U \to \mathbb{R}$. Prove that f is differentiable at $X_0 \in \text{int } U$ if and only if each f_i is differentiable at X_0 . Express $Jf(X_0)$ in terms of $\nabla f_i(X_0), i = 1, 2, \dots, m$.

2. Let f, g be differentiable functions from \mathbb{R}^n to \mathbb{R}^m . Assume that f is differentiable at X_0 , $f(X_0) = 0$ and g is continuous at X_0 . Let $h(x) = g(X) \cdot f(X)$. Prove that h is differentiable at X_0 and compute its derivative.

3. Let $f(x, y) = (\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Compute the Jacobian.

4. Prove that given a point $X_0 \in \mathbb{R}^n$ there is no real valued function on \mathbb{R}^n such that $D_u f(X_0) > 0$ for every direction $u \in \mathbb{R}^n$. Give an example such that $D_u f(X_0) > 0$ for a fixed direction u and any point X_0 .

5. Let f be real-valued function differentiable at $X_0 \in \mathbb{R}^n$ and $\|\nabla f(X_0)\| \neq 0$. Show that there is one and only one vector Y_0 such that $|Df_{X_0}(Y_0)| = \|\nabla f(X_0)\| \neq 0$.

6. Compute
$$\nabla f(x, y)$$
 at those points in \mathbb{R}^2 where it exists
(a) $f(x, y) = \begin{cases} x^2 y^2 \log(x^2 + y^2) & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$
(b) $f(x, y) = \begin{cases} xy \sin \frac{1}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$

7. Given $f : \mathbb{R}^2 \to \mathbb{R}$ define $F(r, \theta) = f(r \cos \theta, r \sin \theta)$. Compute first and second order partial derivatives of F in terms of those of f. Verify that $\|\nabla f(r \cos \theta, r \sin \theta)\|^2 = [\frac{\partial F}{\partial x}(r, \theta)]^2 + \frac{1}{r^2} \frac{\partial F}{\partial y}(r, \theta)]^2$. 8. Assume $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable at each point of \mathbb{R}^2 . Let g_1, g_2 are defined from \mathbb{R}^3 to \mathbb{R} by

$$g_1(x, y, z) = x^2 + y^2 + z^2, \quad g_2(x, y, z) = x + y + z.$$

Let $g: \mathbb{R}^3 \to \mathbb{R}^2$, $g(x, y, z) = (g(x, y, z), g_2(x, y, z))$ and $h = f \circ g$. Show that

$$\|\nabla h\|^2 = 4\left(\frac{\partial f}{\partial x_1}\right)^2 g_1 + 4\left(\frac{\partial f}{\partial x_1}\right)\left(\frac{\partial f}{\partial x_2}\right) g_2 + 3\left(\frac{\partial f}{\partial x_2}\right)^2$$

9. Let $U \subseteq \mathbb{R}^n$ be an open set and $f: U \to \mathbb{R}$ satisfies $f(\lambda X) = \lambda f(X)$ for every $X \in U$, every $\lambda \in \mathbb{R}$ and some p > 0 such that $\lambda X \in U$. If f is differentiable at $X_0 \in U$ show that $X \nabla f(X_0) = pf(X)$.

10. Let $f : \mathbb{R} \to \mathbb{R}^2$ be defined by $f(t) = (\cos t, \sin t)$. Show that the mean value formula f(y) - f(x) = f'(z)(y - x) does not hold.

11. Show that any open connected set in \mathbb{R}^n is polygonally connected; meaning, if $U \subseteq \mathbb{R}^n$ is open connected and $X, Y \in U$ then there exists $Z_0 = X, Z_1, Z_2, \dots, Z_k = Y$ such that X and Y can be connected by lines starting from Z_0 to Z_1 then Z_1 to Z_2 so on and finally Z_{n-1} to Z_n .