Assignment - 1

A column vector $X \in \mathbb{R}^{n}$ is denoted by $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\prime}$.

1. Here we define another 'notion' of distance between two points $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\prime}, Y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{\prime} \in \mathbb{R}^{n}$ by

$$
d_{1}(X, Y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| .
$$

Let $d(X, Y)$ be the usual Euclidean distance we considered in Lecture1. Show that d_{1} and d are equivalent in the sense that there exist constants A, B (calculate A and B explicitly) such that for any two points $X, Y \in \mathbb{R}^{n}$ we have

$$
A d_{1}(X, Y) \leq d(X, Y) \leq B d_{1}(X, Y)
$$

2. Let $A \subseteq \mathbb{R}^{n}$ be a compact set and $f: A \rightarrow \mathbb{R}^{m}$ be continuous. Show that $f(A)$ is compact.
3. Show that connected subsets of \mathbb{R} are intervals. Show that any convex set in \mathbb{R}^{n} is connected.
4. Show that the following functions are continuous from \mathbb{R}^{2} to \mathbb{R}.
(a) $f(x, y)= \begin{cases}\frac{\sin (x y)}{\sqrt{x^{2}+y^{2}}} & \text { if } \quad(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}$
(b)
(c) $f(x, y)=\left\{\begin{array}{ll}\frac{x^{3}+y^{3}}{x^{2}+y^{2}} & \text { if } \quad(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$.
5. Show that the function $f(x, y)= \begin{cases}\frac{x^{4} y^{4}}{\left(x^{2}+y^{4}\right)^{3}} & \text { if } \quad(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}$ approaches the origin along any straight line but NOT continuous at origin.
6. Compute the matrix of the linear transformation $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $A(x, y)^{\prime}=(x, x-y, x+y)^{\prime}$ with respect to the basis $(1,0)^{\prime},(0,1)^{\prime}$ of \mathbb{R}^{2} and basis $(1,0,0)^{\prime},(1,0,1)^{\prime},(1,1,1)^{\prime}$ of \mathbb{R}^{3}.
7. Calculate the first order partial derivatives and directional derivatives for the following real-valued functions defined on \mathbb{R}^{3}.
(a) $f(x)=\|x\|^{4}$.
(b) $f(x)=x \cdot L(x)$ where $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear function.
(c) $f(x)=\sum_{i=1}^{3} \sum_{j=1}^{3} a_{i j} x_{i} x_{j}$ where $a_{i j}=a_{j i}$.
8. Let $f_{1}, f_{2}, \cdots, f_{n}$ are real valued differentiable functions from (a, b). For each $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ where $a<x_{i}<b, i=1,2, \cdots n$ define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \cdots+f_{n}\left(x_{n}\right)$. Show that f is differentiable at each point of its domain and also calculate the directional derivatives.
