

reviewer2@nptel.iitm.ac.in ▼

Courses » Basic Calculus for Engineers, Scientists and Economists

Announcements

Course

Ask a Question Progress

Due on 2017-02-28, 23:59 IS

Unit 6 - Week - 05 - Infinite Series, Multiple Integrals

Course outline

How to access the portal

Week 01 - Numbers, **Functions, Sequencs** and Limits of **Functions**

Week- 02-Continuity, Derivative, Maxima and Minima and Taylor's expansion

Week 03-Integration Of Real Functions

Unit 4 - Week - 04 -**Function of Two** Variables, Limits. Continuity, Differentiability. **Unconstrained and** Constrained minimization

Week - 05 - Infinite Series, Multiple Integrals

- Lecture 25 Infinite Series - 1
- O Lecture 26 Infinite Series - 2
- O Lecture 27 Infinite Series - 3
- Calculation Lecture 28 Multiple Integrals - 1
- O Lecture 29 Multiple Integrals - 2
- Lecture 30 Muliple Integrals - 3
- Quiz : Assignment-5
- Assignment-5 Solution

Assignment-5

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) The series $\sum_{n=0}^{\infty} (\frac{1}{\sqrt{2}})^n$ converges to

0

 $2 + \sqrt{2}$

Score: 0

Accepted Answers:

 $2 + \sqrt{2}$

2) The series $\sum_{n=0}^{\infty} \frac{n!}{1000^n}$ diverges.

Score: 0

3) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ is

converges to 0

divergent

No, the answer is incorrect. Score: 0

Accepted Answers:

conditionally convergent

4) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2+2n+1}$

converges to 5/36

divergent

No, the answer is incorrect.

1 point

True

False

No, the answer is incorrect.

Accepted Answers:

1 point

absolutely convergent

conditionally convergent

1 point

absolutely convergent

conditionally convergent

No, the answer is incorrect. Score: 0

Accepted Answers:

absolutely convergent

5) Maclaurin series of the function $f(x) = x \cos \pi x$ is

$$x - \frac{\pi^2 x^3}{2!} + \frac{\pi^4 x^5}{4!} - \frac{\pi^6 x^7}{6!} + \dots$$

$$x + \frac{\pi^2 x^3}{2!} + \frac{\pi^4 x^5}{4!} + \frac{\pi^6 x^7}{6!} + \dots$$

$$\pi x - \frac{\pi^2 x^2}{2!} + \frac{\pi^4 x^4}{4!} - \frac{\pi^6 x^6}{6!} + \dots$$

$$\pi x - \frac{\pi^3 x^3}{2!} + \frac{\pi^5 x^5}{4!} - \frac{\pi^7 x^7}{6!} + \dots$$

No, the answer is incorrect.

Score: 0

$$x - \frac{\pi^2 x^3}{2!} + \frac{\pi^4 x^5}{4!} - \frac{\pi^6 x^7}{6!} + \dots$$

6) The value of the integration $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} dy dx$ is

1 point

1

2

can not be determined

No, the answer is incorrect.

Score: 0

Accepted Answers:

7) Let
$$A = \int_{0}^{1} \int_{1}^{e^{x}} dy dx$$
. Then after reversing the order of integration we get

1 point

$$A = \int_{0}^{1} \int_{1}^{e^x} dx dy$$

$$A = \int_{0}^{1} \int_{1}^{e^{y}} dx dy$$

$$A = \int_{1}^{0} \int_{1}^{\ln y} dx dy$$

$$A = \int_{1}^{e} \int_{lny}^{1} dx dy$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$A = \int_{1}^{e} \int_{nv}^{1} dx dy$$

8) If
$$F(x, y, z) = 2xy^3\hat{i} + 4x^2y^2\hat{j}$$
 then at $(x, y) = (1, 1)$, $divF = (1, 1)$

1 point

8

4 2 No, the answer is incorrect. Score: 0 **Accepted Answers:** 10 9) If $F(x, y, z) = (2x + y^2)\hat{i} + (2xy + 3y)\hat{k}$, then curl F at (0, 1) is given by 0 $2\hat{i} + 3\hat{j}$ $4\hat{k}$ $2\hat{k}$ No, the answer is incorrect. Score: 0 **Accepted Answers:** If C is the triangle bounded by x = 0, x + y = 1, y = 0 then $\oint (xy + y^2)dx + x^2dy = [Apply Green's The$ 1/2 11/6 -1/65/6 No, the answer is incorrect. Score: 0 **Accepted Answers:** -1/6

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Government of India Ministry of Human Resource Developmen

Funded by