

reviewer2@nptel.iitm.ac.in ▼

Courses » Basic Calculus for Engineers, Scientists and Economists Announcements

Course

Ask a Question

Progress

Unit 5 - Unit 4 - Week - 04 - Function of Two Variables, Limits, Continuity, Differentiability, Unconstrained and Constrained minimization

Course outline

How to access the portal

Week 01 - Numbers, Functions, Sequencs and Limits of Functions

Week- 02-Continuity, Derivative, Maxima and Minima and Taylor's expansion

Week 03-Integration Of Real Functions

Unit 4 - Week - 04 - Function of Two Variables, Limits, Continuity, Differentiability, Unconstrained and Constrained minimization

- Lecture 19 Functions of Two or
 More Variables
- Lecture 20 Limits
 And Continuity Of
 Functions Of Two
 Variables
- Lecture 21 Differentiation Of
 Functions Of Two
 Variables 1
- Lecture 22 Differentiation Of Functions Of Two Variables - 2
- Lecture 23 -Unconstrained Minimization Of Funtions Of Two Variables
- Cecture 24 Constrained
 Minimization And
 Lagrange Multiplier
 Rules
- Ouiz: Assignment-4
- Assignment-4 Solution

Week - 05 - Infinite Series, Multiple Integrals

Assignment-4

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) The domain of the function $f(x) = \sqrt{2 - \sqrt{x}}$ is

Due on 2017-02-21, 23:59 IST.

1 point

- $\{x \in \mathbb{R} : x \ge 0\}.$
- $\{x \in \mathbb{R} : x \le 4\}.$
- $\{x \in \mathbb{R} : 0 \le x \le 4\}.$
- $\{x \in \mathbb{R} : 0 \le x \le 2\}.$

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $\{x \in \mathbb{R} : 0 \le x \le 4\}.$

2) The range of the function $f(x, y) = e^{-\frac{1}{xy}}$ is given by

1 point

- $[0,\infty)$.
- \bigcirc
- $[1, \infty)$.
- $(0, \infty)$.
- 0
- [0, 1].

No, the answer is incorrect.

Accepted Answers:

 $[0,\infty)$.

3) $\lim_{(x,y)\to(0,0)} \frac{e^y \sin x}{x} =$

1 point

undetermined.

- 0.
- 1.
- e.

No, the answer is incorrect. Score: 0

Accepted Answers:

- 1.
- 4) The point of discontinuities of the function $f(x, y) = \sin(\frac{1}{xy})$ are

1 point

 $\{(x,y) \in \mathbb{R}^2 : x = 0\} \cup \{(x,y) \in \mathbb{R}^2 : y = 0\}.$

$$\{(x, y) \in \mathbb{R}^2 : x = 0, y = 0\}.$$

$$\{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, -1 \le y \le 1\}.$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $\{(x, y) \in \mathbb{R}^2 : x = 0\} \cup \{(x, y) \in \mathbb{R}^2 : y = 0\}.$

5) For the function $f(x, y, z) = \sin^{-1}(xyz)$

$$\frac{\partial f}{\partial x} = -\frac{yz}{\sqrt{1 - x^2 y^2 z^2}}.$$

$$\frac{\partial y}{\partial x} = -\frac{yz}{\sqrt{1 - x^2 y^2 z^2}}.$$

$$\frac{\partial f}{\partial y} = \frac{xz}{\sqrt{1 - x^2 y^2 z^2}}$$

$$\frac{\partial f}{\partial z} = \frac{yx}{\sqrt{1 + x^2 y^2 z^2}}.$$

$$\frac{\partial f}{\partial x} = -\frac{yz}{1 - x^2 v^2 z^2}.$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$\frac{\partial f}{\partial y} = \frac{xz}{\sqrt{1 - x^2 y^2 z^2}}.$$

6) Let $w = 2ye^x - \ln z$, $x = \ln(t^2 + 1)$, $y = \tan^{-1} t$, $z = e^t$, then $\frac{dw}{dt}$ at t = 1 is

1 point

$$\pi/2 + 1$$
.

$$\pi + 2$$
.

$$\pi/2 + 2$$
.

$$\pi + 1$$
.

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $\pi + 1$.

The derivative of the function f(x, y) = xy + yz + zx at (1, -1, 2) in the direction of $P = 3\hat{i} + 6\hat{j} - 2\hat{k}i$

3.

2.

1.

No, the answer is incorrect.

Accepted Answers:

3.

The direction in which the directional derivative of $f(x, y) = x^2 + xy + y^2$ at (0, 1) is equal to zero is given

 $\hat{i} + \hat{j}$.

 $\hat{i} - \hat{j}$.

 $2\hat{i} - \hat{j}$.

 $2\hat{i} + \hat{j}$.

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $2\hat{i} - \hat{j}$.

9) For the function $f(x, y) = x^3 - y^3 - 2xy + 6$

(0,0) is a local minimizer.

(-2/3, 2/3) is a local minimizer.

(-2/3, 2/3) is a local maximizer.

(0,0) is a local maximizer.

No, the answer is incorrect.

Score: 0

Accepted Answers:

(-2/3, 2/3) is a local maximizer.

0 points

The value of a, b with $a \le b$ such that $\int_{a}^{b} (2x - x^2)$ has its minimum value are given by

$$a = 0, b = 0.$$

a = 2, b = 2.

a = 0, b = 2.

a = 2, b = 0.

No, the answer is incorrect.

Score: 0

Accepted Answers:

a = 0, b = 0.

Previous Page

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by